• Agard, V., and K. Emanuel, 2017: Clausius–Clapeyron scaling of peak CAPE in continental convective storm environments. J. Atmos. Sci., 74, 30433054, https://doi.org/10.1175/JAS-D-16-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An Open-Source Sounding Analysis Toolkit for the Atmospheric Sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Botes, D., J. R. Mecikalski, and G. J. Jedlovec, 2012: Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment. J. Geophys. Res., 117, D09205, https://doi.org/10.1029/2011JD016996.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and nontornadic supercells. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. S. Johnson, L. J. Czephyha, J. M. Grzywacz, B. A. Klimowski, and M. R. Hjelmfelt, 2006: An observational examination of long-leved supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21, 689714, https://doi.org/10.1175/WAF952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. M. Hitchcock, and K. H. Knopfmeier, 2016: Impact of assimilating preconvective upsonde observations on short-term forecasts of convection observed during MPEX. Mon. Wea. Rev., 144, 43014325, https://doi.org/10.1175/MWR-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N., and G. Johannesson, 2008: Fixed rank kriging for very large spatial data sets. J. Roy. Stat. Soc. B, 70, 209226, https://doi.org/10.1111/j.1467-9868.2007.00633.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961982, https://doi.org/10.1175/BAMS-86-7-961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., and E. S. Pearson, 1973: Tests for departure from normality. Biometrika, 60, 613622.

  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726, https://doi.org/10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–222, https://doi.org/10.1175/0065-9401-28.50.167.

    • Crossref
    • Export Citation
  • Diffenbaugh, N. S., M. Schrerer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316, https://doi.org/10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences. Atmos. Res., 67–68, 117133, https://doi.org/10.1016/S0169-8095(03)00047-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., and J. R. Mecikalski, 2002: Monitoring high-temporal-resolution convective stability indices using the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas tornado outbreak. Wea. Forecasting, 17, 445455, https://doi.org/10.1175/1520-0434(2002)017<0445:MHTRCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gartzke, J., R. Knuteson, G. Przybyl, S. Ackerman, and H. Revercomb, 2017: Comparison of satellite-, model-, and radiosonde-derived convective available potential energy in the Southern Great Plains region. J. Appl. Meteor. Climatol., 56, 14991513, https://doi.org/10.1175/JAMC-D-16-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, https://doi.org/10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 11921203, https://doi.org/10.1175/1520-0469(1995)052<1192:NSOATV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture– precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 08110 100, https://doi.org/10.1175/JCLI-D-16-0885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irion, F. W., and Coauthors, 2018: Single-footprint retrievals of temperature, water vapor, and cloud properties from AIRS. Atmos. Meas. Tech., 11, 971995, https://doi.org/10.5194/amt-11-971-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and Coauthors, 2015: Real-time applications of the variational version of the Local Analysis and Prediction System (vLAPS). Bull. Amer. Meteor. Soc., 96, 20452057, https://doi.org/10.1175/BAMS-D-13-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, https://doi.org/10.1175/WAF-D-11-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., W. A. Gallus, B. D. Lee, and C. A. Finley, 2013: Analysis of tornado-induced tree-fall using aerial photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, tornadoes of 2011. J. Appl. Meteor. Climatol., 52, 10491068, https://doi.org/10.1175/JAMC-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., R. Ware, H. Jiang, and Y. Xie, 2016: Rapid mesoscale environmental changes accompanying genesis of an unusual tornado. Wea. Forecasting, 31, 763786, https://doi.org/10.1175/WAF-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruskal, W. H., and W. W. Wallis, 1952: Use of ranks in one-criterion variance analysis. J. Amer. Stat. Assoc., 47, 583621, https://doi.org/10.1080/01621459.1952.10483441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerach, D. G., and W. R. Cotton, 2012: Comparing aerosol and low-level moisture influences on supercell tornadogenesis: Three-dimensional idealized simulations. J. Atmos. Sci., 69, 969987, https://doi.org/10.1175/JAS-D-11-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddy, E., and C. Barnet, 2008: Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Trans. Geosci. Remote Sens., 46, 23752384, https://doi.org/10.1109/TGRS.2008.917498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823, https://doi.org/10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, https://doi.org/10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, https://doi.org/10.1175/2010WAF2222368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2017: Exact expression for the lifting condensation level. J. Atmos. Sci., 74, 38913900, https://doi.org/10.1175/JAS-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, https://doi.org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., and M. A. Askelson, 2012: Vertical variations of boundary layer potential buoyancy in tornadic and nontornadic near-storm environments. Wea. Forecasting, 27, 14891506, https://doi.org/10.1175/WAF-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., W. F. Feltz, and S. A. Ackernam, 2008: The temporal evolution of convective indices in storm-producing environments. Wea. Forecasting, 23, 786794, https://doi.org/10.1175/2008WAF2007046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX95. Mon. Wea. Rev., 128, 565592, https://doi.org/10.1175/1520-0493(2000)128<0565:AOANSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., N. Smith, and W. L. Smith Sr., 2015: The use of hyperspectral sounding information to monitor atmospheric tendencies leading to severe local storms. Earth Space Sci., 2, 369377, https://doi.org/10.1002/2015EA000122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-doppler and single-doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., E. J. Fetzer, B. H. Kahn, S. Wong, G. Manipon, A. Guillaume, and B. Wilson, 2013: Cloud-state dependent sampling in AIRS observations based on CloudSat cloud classification. J. Climate, 26, 83578377, https://doi.org/10.1175/JCLI-D-13-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 965 191 11
PDF Downloads 382 90 1

Trajectory-Enhanced AIRS Observations of Environmental Factors Driving Severe Convective Storms

Peter KalmusJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Peter Kalmus in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7557-8614
,
Brian H. KahnJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Brian H. Kahn in
Current site
Google Scholar
PubMed
Close
,
Sean W. FreemanDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Sean W. Freeman in
Current site
Google Scholar
PubMed
Close
, and
Susan C. van den HeeverDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Susan C. van den Heever in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We investigate environmental factors of severe convective weather using temperature and moisture retrievals from the Atmospheric Infrared Sounder (AIRS) that lie along parcel trajectories traced from tornado, large hail, and severe wind producing events in the central United States. We create AIRS proximity soundings representative of the storm environment by calculating back trajectories from storm times and locations at levels throughout the troposphere, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model forced with the 32-km North American Regional Reanalysis (NARR) and 12-km North American Mesoscale Forecast System (NAM12). The proximity soundings are calculated for severe weather events including tornadoes, hail ≥2 in. diameter, and wind gusts >65 mph (29 m s−1) specified in the NCEI Storm Events database. Box-and-whisker diagrams exhibit more realistic values of enhanced convective available potential energy (CAPE) and suppressed convective inhibition (CIN) relative to conventional “nearest neighbor” (NN) soundings; however, differences in lifting condensation level (LCL), level of free convection (LFC), and significant tornado parameter (STP) from the HYSPLIT-adjusted back traced soundings are more similar to NN soundings. This methodology should be extended to larger swaths of soundings, and to other operational infrared sounders, to characterize the large-scale environment in severe convective events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter Kalmus, peter.m.kalmus@jpl.nasa.gov

Abstract

We investigate environmental factors of severe convective weather using temperature and moisture retrievals from the Atmospheric Infrared Sounder (AIRS) that lie along parcel trajectories traced from tornado, large hail, and severe wind producing events in the central United States. We create AIRS proximity soundings representative of the storm environment by calculating back trajectories from storm times and locations at levels throughout the troposphere, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model forced with the 32-km North American Regional Reanalysis (NARR) and 12-km North American Mesoscale Forecast System (NAM12). The proximity soundings are calculated for severe weather events including tornadoes, hail ≥2 in. diameter, and wind gusts >65 mph (29 m s−1) specified in the NCEI Storm Events database. Box-and-whisker diagrams exhibit more realistic values of enhanced convective available potential energy (CAPE) and suppressed convective inhibition (CIN) relative to conventional “nearest neighbor” (NN) soundings; however, differences in lifting condensation level (LCL), level of free convection (LFC), and significant tornado parameter (STP) from the HYSPLIT-adjusted back traced soundings are more similar to NN soundings. This methodology should be extended to larger swaths of soundings, and to other operational infrared sounders, to characterize the large-scale environment in severe convective events.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter Kalmus, peter.m.kalmus@jpl.nasa.gov
Save