Abstract
Although there have been numerous studies documenting the processes/environments that lead to the intensification of African easterly waves (AEWs), only a few of these studies investigated the effect of those processes or the environment on the predictability of AEWs. Here, the large-scale modulation of AEW intensity predictability is evaluated using the 51-member ECMWF ensemble prediction system (EPS) during an active AEW period (July–September 2011–13). Forecasts are stratified based on the 72-h AEW intensity standard deviation (SD) to evaluate hypotheses for how different processes contribute to large forecast SD. While large and small SD forecasts are associated with similar baroclinic and barotropic energy conversions, forecasts with large SD are characterized by higher relative humidity values downstream of the AEW trough. These areas of higher humidity are also associated with higher precipitation and precipitation SD, suggesting that uncertainty associated with diabatic processes could be linked with large AEW intensity SD. Although water vapor is a strong function of longitude and phase of convectively coupled equatorial waves, the cases with large and small SD are characterized by similar longitude and wave phase, suggesting that AEWs occurring in certain locations or convectively coupled equatorial wave phases are not more or less predictable.
Current affiliation: I. M. Systems Group, Inc., College Park, Maryland.
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).