• Adachi, A., T. Kobayashi, H. Yamauchi, and S. Onogi, 2013: Detection of potentially hazardous convective clouds with a dual-polarized C-band radar. Atmos. Meas. Tech., 6, 27412760, https://doi.org/10.5194/amt-6-2741-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. E., L. D. Carey, W. A. Petersen, and K. R. Knupp, 2011: C-band dual-polarimetric radar signatures of hail. Electron. J. Oper. Meteor., 12 (2), 130.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldini, L., and E. Gorgucchi, 2006: Identification of the melting layer through dual-polarization radar measurements at vertical incidence. J. Atmos. Oceanic Technol., 23, 829839, https://doi.org/10.1175/JTECH1884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, https://doi.org/10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1957: The supercooling, freezing and melting of giant waterdrops at terminal velocity in air. Artificial Stimulation of Rain, H. Weickmann and W. Smith, Eds., Pergamon Press, 233–245.

  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, https://doi.org/10.1175/JAM2155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brooks, C., 1920: The nature of sleet and how it is formed. Mon. Wea. Rev., 48, 6972, https://doi.org/10.1175/1520-0493(1920)48<69b:TNOSAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, R. W., and R. E. Stewart, 1995: Precipitation type characteristics at the surface in winter storms. Cold Reg. Sci. Technol., 23, 215229, https://doi.org/10.1016/0165-232X(94)00014-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorsey, N. E., 1948: The freezing of supercooled water. Trans. Amer. Philos. Soc., 38, 247328, https://doi.org/10.2307/1005602.

  • Edwards, G. R., and L. F. Evans, 1971: Mechanism of activation of ice nuclei. J. Atmos. Sci., 28, 14431447, https://doi.org/10.1175/1520-0469(1971)028<1443:TMOAOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S., and R. E. Stewart, 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476, https://doi.org/10.1016/j.atmosres.2006.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S., R. E. Stewart, and W. Henson, 2009: On the variation of ice pellet characteristics. J. Geophys. Res., 114, D09207, https://doi.org/10.1029/2008JD011260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gokhale, N. R., and O. Lewinter, 1971: Microcinematographic studies of contact nucleation. J. Appl. Meteor., 10, 469473, https://doi.org/10.1175/1520-0450(1971)010<0469:MSOCN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1975: An approximation for the shapes of large raindrops. J. Appl. Meteor., 14, 15781583, https://doi.org/10.1175/1520-0450(1975)014<1578:AAFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höller, H., V. N. Bringi, J. Hubbert, M. Hagen, and P. F. Meischner, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 25002522, https://doi.org/10.1175/1520-0469(1994)051<2500:LCAPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, N., and C. Will, 2015: Contact freezing of water by salts. J. Phys. Chem. Lett., 6, 23903495.

  • Knight, C. A., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, J. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci., 28, 110115, https://doi.org/10.1175/1520-0469(1971)028<0110:FFBOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1958: The hail problem. Nublia, 1, 1299.

  • Marín, A. G., O. R. Enríquez, P. Brunet, P. Colinet, and J. H. Snoeijer, 2014: Universality of tip singularity formation in freezing water drops. Phys. Rev. Lett., 113, 15, https://doi.org/10.1103/PhysRevLett.113.054301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikhailov, M. D., and A. P. Silva Freire, 2013: The drag coefficient of a sphere: An approximation using Shanks transform. Powder Technol., 237, 432435, https://doi.org/10.1016/j.powtec.2012.12.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., R. E. Ruskin, and K. J. Heffernan, 1968: Glaciation of a cumulus at approximately −4°C. J. Atmos. Sci., 25, 889905, https://doi.org/10.1175/1520-0469(1968)025<0889:GOACAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagumo, N., and Y. Fujiyoshi, 2015: Microphysical properties of slow-falling and fast-falling ice pellets formed by freezing associated with evaporative cooling. Mon. Wea. Rev., 143, 43764392, https://doi.org/10.1175/MWR-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, J. A., and B. P. Selberg, 1968: Drag coefficient of small spherical particles. AIAA J., 6, 401408, https://doi.org/10.2514/3.4513.

  • Pérez-Díaz, J. L., and Coauthors, 2017: Fogs: Physical basis, characteristic properties, and impact on the environment and human health. Water, 9, 807, https://doi.org/10.3390/w9100807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poiares Baptista, J. V. P., 1992: Minute of radar working group. Proc. Olympus Propagation Experimenters’17, Stockholm, Sweden/Helsinki, Finland, NASA, 36–40.

  • Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 96, 247256, https://doi.org/10.1002/qj.49709640807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ressler, G. M., S. M. Milrad, E. H. Atallah, and J. R. Gyakum, 2012: Synoptic-scale analysis of freezing rain events in Montreal, Quebec, Canada. Wea. Forecasting, 27, 362378, https://doi.org/10.1175/WAF-D-11-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., H. D. Reeves, T. J. Schuur, M. R. Kumjian, and D. S. Zrnić, 2011: Investigations of polarimetric radar signatures in winter storms and their relation to aircraft icing and freezing rain. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., P13.197, https://ams.confex.com/ams/35Radar/webprogram/Paper191245.html.

  • Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, 1633, https://doi.org/10.1029/2003GL017371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2007: One decade of imaging precipitation measurement by 2D-video-disdrometer. Adv. Geosci., 10, 8590, https://doi.org/10.5194/adgeo-10-85-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-videodisdrometer. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 3–31.

    • Crossref
    • Export Citation
  • Snoeijer, J. H., and B. Philippe, 2012: Pointy ice-drops: How water freezes into a singular shape. Amer. J. Phys., 80, 764771, https://doi.org/10.1119/1.4726201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spengler, J. D., and N. R. Gokhale, 1972: Freezing of freely suspended supercooled water drops in a large vertical wind tunnel. J. Appl. Meteor., 11, 11011107, https://doi.org/10.1175/1520-0450(1972)011<1101:FOFSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and R. W. Crawford, 1995: Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res., 36, 1737, https://doi.org/10.1016/0169-8095(94)00004-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., 1975: Deformation of frozen drops and their frequencies. J. Meteor. Soc. Japan, 53, 402411, https://doi.org/10.2151/jmsj1965.53.6_402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and A. Yamashita, 1970: Shattering of frozen water drops in a supercooled cloud. J. Meteor. Soc. Japan, 48, 373376, https://doi.org/10.2151/jmsj1965.48.4_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, https://doi.org/10.1175/JTECH-D-13-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video distrometer. J. Atmos. Oceanic Technol., 22, 966978, https://doi.org/10.1175/JTECH1767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L. C., and W. B. Good, 1966: Crystallization rate of supercooled water in cylindrical tubes. J. Geophys. Res., 71, 24652469, https://doi.org/10.1029/JZ071i010p02465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, https://doi.org/10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 113 14
PDF Downloads 238 91 7

Geometrical Properties of Hydrometeors during the Refreezing Process and Their Effects on Dual-Polarized Radar Signals

Nobuhiro NagumoMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Nobuhiro Nagumo in
Current site
Google Scholar
PubMed
Close
,
Ahoro AdachiMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Ahoro Adachi in
Current site
Google Scholar
PubMed
Close
, and
Hiroshi YamauchiMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, and Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Hiroshi Yamauchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes an observational study for the geometrical properties of hydrometeors during a refreezing process initiated by a winter storm in the northern Kanto Plain, Japan, on 29 January 2016, in which a subfreezing layer developed below a melting layer. The observations by using dual-polarization radar showed consistency between high values of differential reflectivity ZDR signals in midair and ice-pellet reports at the surface. The high ZDR was indicative of the sideways-oriented particles with a small axis ratio. The low ZDR signals in midair corresponded with the reports of rain or rain/ice-pellet mixtures. Observations by using a two-dimensional video disdrometer (2DVD) near the ground showed different microphysics corresponding to high ZDR and low ZDR periods. The high ZDR periods of 2DVD observations indicated that the hydrometeors exhibited dual modes of fall velocities, namely, fast-falling and slow-falling modes. The fast-falling particles were found to be deformed ice pellets with long sideways orientations that contributed to the high ZDR. The slow-falling particles were also deformed ice pellets but with a variety of orientations. This feature was rather close to that of general dry conditions of ice particles in the atmosphere. Meanwhile, the low ZDR periods of 2DVD observations indicated that the hydrometeors exhibited a single mode of fall velocity close to the terminal velocity of raindrops, but with a more spherical shape compared to raindrops. Hence, it is suggested that the high ZDR signal occurs during freezing between the initial stage of spherical ice forming and completely freezing stage of ice pellets with a variety of orientations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nobuhiro Nagumo, nagumo@mri-jma.go.jp

Abstract

This paper describes an observational study for the geometrical properties of hydrometeors during a refreezing process initiated by a winter storm in the northern Kanto Plain, Japan, on 29 January 2016, in which a subfreezing layer developed below a melting layer. The observations by using dual-polarization radar showed consistency between high values of differential reflectivity ZDR signals in midair and ice-pellet reports at the surface. The high ZDR was indicative of the sideways-oriented particles with a small axis ratio. The low ZDR signals in midair corresponded with the reports of rain or rain/ice-pellet mixtures. Observations by using a two-dimensional video disdrometer (2DVD) near the ground showed different microphysics corresponding to high ZDR and low ZDR periods. The high ZDR periods of 2DVD observations indicated that the hydrometeors exhibited dual modes of fall velocities, namely, fast-falling and slow-falling modes. The fast-falling particles were found to be deformed ice pellets with long sideways orientations that contributed to the high ZDR. The slow-falling particles were also deformed ice pellets but with a variety of orientations. This feature was rather close to that of general dry conditions of ice particles in the atmosphere. Meanwhile, the low ZDR periods of 2DVD observations indicated that the hydrometeors exhibited a single mode of fall velocity close to the terminal velocity of raindrops, but with a more spherical shape compared to raindrops. Hence, it is suggested that the high ZDR signal occurs during freezing between the initial stage of spherical ice forming and completely freezing stage of ice pellets with a variety of orientations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nobuhiro Nagumo, nagumo@mri-jma.go.jp
Save