• Arhan, M., S. Speich, C. Messager, G. Dencausse, R. Fine, and M. Boye, 2011: Anticyclonic and cyclonic eddies of subtropical origin in the subantarctic zone south of Africa. J. Geophys. Res., 116, C11004, https://doi.org/10.1029/2011JC007140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AVISO, 2016: User Handbook Ssalto/Duacs: Mozambique (M)SLA Near-Real-Time Products. Aviso Altimetry, 38 pp., https://www.aviso.altimetry.fr/en/data/product-information/aviso-user-handbooks.html.

  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Jia, and Q. Liu, 2017: Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J. Oceanogr., 73, 295307, https://doi.org/10.1007/s10872-016-0403-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., S.-P. Xie, and H. Hashizume, 2003: Barometric pressure variations associated with eastern Pacific tropical instability waves. J. Climate, 16, 30503057, https://doi.org/10.1175/1520-0442(2003)016<3050:BPVAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., and Coauthors, 2015: Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 30573081, https://doi.org/10.1175/JPO-D-14-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, J. S. Delamere, S. A. Clough, and J. J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, J. S. Delamere, S. A. Clough, J. J. Morcrette, and Y. Hou, 2005: Application of the shortwave radiative transfer model, RRTMG_SW, to the National Center for Atmospheric Research and National Centers for Environmental Prediction General Circulation Models. Proc. Fifteenth ARM Science Team Meeting, Daytona Beach, FL, ARM, 8 pp., https://arm.gov/publications/proceedings/conf15/extended_abs/iacono_mj.pdf.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047%3C2784:AODEPM%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Klemp, J. B., and W. C. Skamarock, 2004: Model numerics for convective-storm simulation. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 117–137.

    • Crossref
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, https://doi.org/10.1175/MWR3440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 96119621, https://doi.org/10.1002/jgrd.50769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J.-W., S.-P. Xie, J. R. Norris, and S.-P. Zhang, 2014: Low-level cloud response to the Gulf Stream front in winter using CALIPSO. J. Climate, 27, 44214432, https://doi.org/10.1175/JCLI-D-13-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 63136330, https://doi.org/10.1002/2014JD022930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., and Y. L. Kogan, 2003: Simulating the transition from drizzling marine stratocumulus to boundary layer cumulus with a mesoscale model. Mon. Wea. Rev., 131, 23422360, https://doi.org/10.1175/1520-0493(2003)131<2342:STTFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messager, C., and S. Swart, 2016: Significant atmospheric boundary layer change observed above an Agulhas current warm cored eddy. Adv. Meteor., 2016, 3659657, https://doi.org/10.1155/2016/3659657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messager, C., S. Speich, and E. Key, 2012: Marine atmospheric boundary layer over some Southern Ocean fronts during the IPY BGH 2008 cruise. Ocean Sci., 8, 10011023, https://doi.org/10.5194/os-8-1001-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock and W. Wang, 2005: The weather research and forecast model: Software architecture and performance. Use of High Performance Computing in Meteorology, World Scientific, 156–168, https://doi.org/10.1142/9789812701831_0012.

    • Crossref
    • Export Citation
  • Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio current system. J. Phys. Oceanogr., 13, 18471867, https://doi.org/10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, https://doi.org/10.1175/JCLI-D-12-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, https://doi.org/10.1175/2780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010: The effects of SST induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281, https://doi.org/10.1175/2009JCLI2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K.-A., P. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, https://doi.org/10.1029/2005JC003016.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2004: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic, 954 pp.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., and J. Lutjeharms, 2000: Air-sea exchange over an Agulhas eddy at the subtropical convergence, Global Atmos. Ocean Syst., 7, 125150.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy-wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Baker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., S.-P. Xie, H. Tokinaga, and Y. Kawai, 2013: Cloud response to the meandering Kuroshio Extension front. J. Climate, 26, 93939398, https://doi.org/10.1175/JCLI-D-13-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., S.-P. Zhang, L. Yi, J.-W. Liu, and J.-H. Guo, 2017: A study of stratocumulus response to the Kuroshio extension front: Numerical simulation and experiments (in Chinese). Period. Ocean Univ. China, 47, 1020.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., H. Tokinaga, and S. P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate, 23, 47044715, https://doi.org/10.1175/2010JCLI3267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S.-P., Y. Wang, L. Yi, H.-K. Liu, and Q. Wang, 2017: A study of stratocumulus responses to the Kuroshio Extension front: in-situ observations and mechanism (in Chinese). Chin. J. Atmos. Sci., 41, 227235, https://doi.org/10.3878/j.issn.1006-9895.1605.16137.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 78 9
PDF Downloads 269 86 5

Observed Variations of the Atmospheric Boundary Layer and Stratocumulus over a Warm Eddy in the Kuroshio Extension

Qian WangPhysical Oceanography Laboratory/CIMST, and Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Qian Wang in
Current site
Google Scholar
PubMed
Close
,
Su-Ping ZhangPhysical Oceanography Laboratory/CIMST, and Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Su-Ping Zhang in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping XieScripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory/CIMST, and Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Joel R. NorrisScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Joel R. Norris in
Current site
Google Scholar
PubMed
Close
,
Jian-Xiang SunPhysical Oceanography Laboratory/CIMST, and Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jian-Xiang Sun in
Current site
Google Scholar
PubMed
Close
, and
Yu-Xi JiangPhysical Oceanography Laboratory/CIMST, and Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yu-Xi Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A research vessel sailing across a warm eddy in the Kuroshio Extension on 13 April 2016 captured an abrupt development of stratocumulus under synoptic high pressure. Shipboard observations and results from regional atmospheric model simulations indicate that increased surface heat flux over the ocean eddy lowered surface pressure and thereby accelerated southeasterly winds. The southeasterly winds transported moisture toward the low pressure and enhanced the air–sea interface heat flux, which in turn deepened the low pressure and promoted low-level convergence and rising motion over the warm eddy. The lifting condensation level lowered and the top of the marine atmospheric boundary layer (MABL) rose, thereby aiding the development of the stratocumulus. Further experiments showed that 6°C sea surface temperature anomalies associated with the 400-km-diameter warm eddy accounted for 80% of the total ascending motion and 95% of total cloud water mixing ratio in the marine atmospheric boundary layer during the development of stratocumulus. The synthesis of in situ soundings and modeling contributes to understanding of the mechanism by which the MABL and marine stratocumulus respond to ocean eddies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Su-Ping Zhang, zsping@ouc.edu.cn

Abstract

A research vessel sailing across a warm eddy in the Kuroshio Extension on 13 April 2016 captured an abrupt development of stratocumulus under synoptic high pressure. Shipboard observations and results from regional atmospheric model simulations indicate that increased surface heat flux over the ocean eddy lowered surface pressure and thereby accelerated southeasterly winds. The southeasterly winds transported moisture toward the low pressure and enhanced the air–sea interface heat flux, which in turn deepened the low pressure and promoted low-level convergence and rising motion over the warm eddy. The lifting condensation level lowered and the top of the marine atmospheric boundary layer (MABL) rose, thereby aiding the development of the stratocumulus. Further experiments showed that 6°C sea surface temperature anomalies associated with the 400-km-diameter warm eddy accounted for 80% of the total ascending motion and 95% of total cloud water mixing ratio in the marine atmospheric boundary layer during the development of stratocumulus. The synthesis of in situ soundings and modeling contributes to understanding of the mechanism by which the MABL and marine stratocumulus respond to ocean eddies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Su-Ping Zhang, zsping@ouc.edu.cn
Save