A Climatology of Extratropical Cyclones Leading to Extreme Weather Events over Central and Eastern North America

Alicia M. Bentley I.M. Systems Group, Inc., and NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Alicia M. Bentley in
Current site
Google Scholar
PubMed
Close
,
Lance F. Bosart Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
, and
Daniel Keyser Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Daniel Keyser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cool-season extreme weather events (EWEs) (i.e., high-impact weather events that are societally disruptive, geographically widespread, exceptionally prolonged, and climatologically infrequent) are typically associated with strong extratropical cyclones (ECs). The opportunity to investigate the genesis locations, tracks, and frequencies of ECs leading to EWEs over central and eastern North America and compare them to those of ordinary ECs forming over and traversing the same region motivates this study. ECs leading to EWEs are separated from ordinary ECs according to the magnitude, areal extent, and duration of their 925-hPa standardized wind speed anomalies in the 0.5° NCEP CFSR dataset. This separation allows for the construction of an October–March 1979–2016 climatology of ECs leading to EWEs over central and eastern North America. The climatology of ECs leading to EWEs over central and eastern North America reveals that these ECs typically form in the lee of the Rocky Mountains, over the south-central United States, and along the east coast of North America at latitudes equatorward of the typical genesis locations of ordinary ECs. ECs leading to EWEs exhibit equatorward-shifted tracks relative to ordinary ECs, likely associated with an equatorward shift in the position of the subtropical or polar-front jet. ECs leading to EWEs form most frequently in November and March, when the seasonal alignment of baroclinic and diabatic forcings is maximized. Similar to ordinary ECs, the genesis locations, tracks, and frequencies of ECs leading to EWEs are partially determined by the states of the Pacific–North American pattern and North Atlantic Oscillation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alicia M. Bentley, alicia.bentley@noaa.gov

Abstract

Cool-season extreme weather events (EWEs) (i.e., high-impact weather events that are societally disruptive, geographically widespread, exceptionally prolonged, and climatologically infrequent) are typically associated with strong extratropical cyclones (ECs). The opportunity to investigate the genesis locations, tracks, and frequencies of ECs leading to EWEs over central and eastern North America and compare them to those of ordinary ECs forming over and traversing the same region motivates this study. ECs leading to EWEs are separated from ordinary ECs according to the magnitude, areal extent, and duration of their 925-hPa standardized wind speed anomalies in the 0.5° NCEP CFSR dataset. This separation allows for the construction of an October–March 1979–2016 climatology of ECs leading to EWEs over central and eastern North America. The climatology of ECs leading to EWEs over central and eastern North America reveals that these ECs typically form in the lee of the Rocky Mountains, over the south-central United States, and along the east coast of North America at latitudes equatorward of the typical genesis locations of ordinary ECs. ECs leading to EWEs exhibit equatorward-shifted tracks relative to ordinary ECs, likely associated with an equatorward shift in the position of the subtropical or polar-front jet. ECs leading to EWEs form most frequently in November and March, when the seasonal alignment of baroclinic and diabatic forcings is maximized. Similar to ordinary ECs, the genesis locations, tracks, and frequencies of ECs leading to EWEs are partially determined by the states of the Pacific–North American pattern and North Atlantic Oscillation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alicia M. Bentley, alicia.bentley@noaa.gov
Save
  • Alfonso, A. P., and L. R. Naranjo, 1996: The 13 March 1993 severe squall line over western Cuba. Wea. Forecasting, 11, 89102, https://doi.org/10.1175/1520-0434(1996)011<0089:TMSSLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angel, J. R., and S. Isard, 1998: The frequency and intensity of Great Lake cyclones. J. Climate, 11, 6171, https://doi.org/10.1175/1520-0442(1998)011<0061:TFAIOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., L. F. Bosart, D. Keyser, and A. R. Aiyyer, 2008: Influence of large-scale low regimes on cool-season precipitation in the northeastern United States. Mon. Wea. Rev., 136, 29452963, https://doi.org/10.1175/2007MWR2308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R. A., 1987: The role of ocean fluxes and initial data on the numerical prediction of an intense coastal storm. Dyn. Atmos. Oceans, 10, 359388, https://doi.org/10.1016/0377-0265(87)90025-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 1992: A model of Rocky Mountain lee cyclogenesis. J. Atmos. Sci., 49, 15101522, https://doi.org/10.1175/1520-0469(1992)049<1510:AMORML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierly, G. D., and J. A. Harrington Jr., 1995: A climatology of transition season Colorado cyclones: 1961–1990. J. Climate, 8, 853863, https://doi.org/10.1175/1520-0442(1995)008<0853:ACOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowie, E. H., and R. H. Weightman, 1914: Types of storms of the United States and their average movements. Mon. Wea. Rev., 42 (Suppl. 1), 337.

    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2015: Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 143, 49754995, https://doi.org/10.1175/MWR-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, F. E., and P. J. Smith, 1978: The climatology of cyclones and anticyclones in the upper Mississippi and Ohio River valleys and Great Lakes region, 1950–1974. Proc. Ind. Acad. Sci., 87, 391402.

    • Search Google Scholar
    • Export Citation
  • Bullock, T. A., and J. R. Gyakum, 1993: A diagnostic study of cyclogenesis in the western North Pacific Ocean. Mon. Wea. Rev., 121, 6575, https://doi.org/10.1175/1520-0493(1993)121<0065:ADSOCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58, 17841800, https://doi.org/10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, D., J. J. Noel, and L. H. Maze, 1995: Determining cyclone frequencies using equal-area circles. Mon. Wea. Rev., 123, 22852294, https://doi.org/10.1175/1520-0493(1995)123<2285:DCFUEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, D., C. Merinsky, and M. Lawson, 2008: Climatology of surface cyclone tracks associated with large central and eastern U.S. snowstorms, 1950–2000. Mon. Wea. Rev., 136, 31933202, https://doi.org/10.1175/2008MWR2324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christenson, C. E., J. E. Martin, and Z. J. Handlos, 2017: A synoptic climatology of Northern Hemisphere, cold season polar and subtropical jet superposition events. J. Climate, 30, 72317246, https://doi.org/10.1175/JCLI-D-16-0565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, Y.-S., K. D. Hage, and E. R. Reinelt, 1976: On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian mountains. Mon. Wea. Rev., 104, 879891, https://doi.org/10.1175/1520-0493(1976)104<0879:OLCAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, https://doi.org/10.1175/JCLI-D-12-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1976: Winter cyclone frequencies over the eastern United States and adjacent western Atlantic, 1964–1973. Bull. Amer. Meteor. Soc., 57, 548553, https://doi.org/10.1175/1520-0477(1976)057<0548:WCFOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CPC, 2017a: Normalized daily PNA indices. Accessed 14 October 2017, ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.pna.index.b500101.current.ascii.

  • CPC, 2017b: Normalized daily NAO indices. Accessed 14 October 2017, ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii.

  • Dacre, H. F., M. K. Hawcroft, M. A. Stringer, and K. I. Hodges, 2012: An extratropical cyclone atlas: A tool for illustrating cyclone structure and evolution characteristics. Bull. Amer. Meteor. Soc., 93, 14971502, https://doi.org/10.1175/BAMS-D-11-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1997: The modification of baroclinic waves by the Rocky Mountains. J. Atmos. Sci., 54, 848868, https://doi.org/10.1175/1520-0469(1997)054<0848:TMOBWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1988: Observational evidence for the influence of surface heat fluxes on maritime cyclogenesis. Mon. Wea. Rev., 116, 26492659, https://doi.org/10.1175/1520-0493(1988)116<2649:OEFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, https://doi.org/10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T. P., and J. Gottschalck, 2013: Interannual variability of Northern Hemisphere storm tracks in coarse-gridded datasets. Adv. Meteor., 2013, 545463, https://doi.org/10.1155/2013/545463.

    • Search Google Scholar
    • Export Citation
  • Eichler, T. P., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, https://doi.org/10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaza, R. S., and L. F. Bosart, 1990: Trough-merger characteristics over North America. Wea. Forecasting, 5, 314331, https://doi.org/10.1175/1520-0434(1990)005<0314:TMCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S.-W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, https://doi.org/10.1175/MWR-D-12-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 11371155, https://doi.org/10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 11561173, https://doi.org/10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and R. E. Danielson, 2000: Analyses of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific. Mon. Wea. Rev., 128, 851863, https://doi.org/10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., P. J. Roebber, and T. A. Bullock, 1992: The role of antecedent surface vorticity development as a conditioning process in explosive cyclone intensification. Mon. Wea. Rev., 120, 14651489, https://doi.org/10.1175/1520-0493(1992)120<1465:TROASV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., L. F. Bosart, and D. Keyser, 1995: The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part I: Multiscale case study. Mon. Wea. Rev., 123, 26632692, https://doi.org/10.1175/1520-0493(1995)123<2663:TOVWMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., D. Keyser, and L. F. Bosart, 1996: The Ohio valley wave-merger cyclogenesis event of 25–26 January 1978. Part II: Diagnosis using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 124, 21762205, https://doi.org/10.1175/1520-0493(1996)124<2176:TOVWMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., G. S. Fargion, and D. C. Biggs, 1999: Loop Current eddy paths in the western Gulf of Mexico. J. Phys. Oceanogr., 29, 11801207, https://doi.org/10.1175/1520-0485(1999)029<1180:LCEPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, B. P., 1981: Secular variation in Atlantic coast extratropical cyclones. Mon. Wea. Rev., 109, 159167, https://doi.org/10.1175/1520-0493(1981)109<0159:SVIACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, https://doi.org/10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosler, C. L., and L. A. Gamage, 1956: Cyclone frequencies in the United States for the period 1905 to 1954. Mon. Wea. Rev., 84, 388390, https://doi.org/10.1175/1520-0493(1956)084<0388:CFITUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, Z., D.-L. Zhang, J. Gyakum, and A. Staniforth, 1995: A diagnostic analysis of the superstorm of March 1993. Mon. Wea. Rev., 123, 17401761, https://doi.org/10.1175/1520-0493(1995)123<1740:ADAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and J. D. Thompson, 1980: A numerical study of Loop Current intrusions and eddy shedding. J. Phys. Oceanogr., 10, 16111651, https://doi.org/10.1175/1520-0485(1980)010<1611:ANSOLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. C., 1954: Statistics on the movement and deepening of cyclones in the Middle West. Mon. Wea. Rev., 82, 116122, https://doi.org/10.1175/1520-0493(1954)082<0116:SOTMAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, T. A., 1995: An analysis of NMC’s nested grid model forecasts of Alberta clippers. Wea. Forecasting, 10, 632641, https://doi.org/10.1175/1520-0434(1995)010<0632:AAONNG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacopelli, A. J., and J. A. Knox, 2001: Mesoscale dynamics of the record-breaking 10 November 1998 mid-latitude cyclone: A satellite-based case study. Natl. Wea. Dig., 25, 3342.

    • Search Google Scholar
    • Export Citation
  • Isard, S., J. Angel, and G. VanDyke, 2000: Zones of origin for Great Lakes cyclones in North America, 1899–1996. Mon. Wea. Rev., 128, 474485, https://doi.org/10.1175/1520-0493(2000)128<0474:ZOOFGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, W. H., 1957: Principal tracks and mean frequencies of cyclones and anticyclones in the Northern Hemisphere. Research Paper No. 40, U.S. Weather Bureau, Washington, DC, 60 pp.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, https://doi.org/10.1175/2009JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., and L. W. Uccellini, 2004: A snowfall impact scale derived from Northeast storm snowfall distributions. Bull. Amer. Meteor. Soc., 85, 177194, https://journals.ametsoc.org/doi/10.1175/BAMS-85-2-177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., P. N. Schumacher, R. F. Morales Jr., and L. W. Uccellini, 1995: Overview of the 12–14 March 1993 superstorm. Bull. Amer. Meteor. Soc., 76, 165182, https://doi.org/10.1175/1520-0477(1995)076<0165:OOTMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and Y. Liu, 1996: The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev., 124, 14091434, https://doi.org/10.1175/1520-0493(1996)124<1409:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailier, P. J., D. B. Stephenson, C. A. Ferro, and K. I. Hodges, 2006: Serial clustering of extratropical cyclones. Mon. Wea. Rev., 134, 22242240, https://doi.org/10.1175/MWR3160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., M. I. Hegglin, W. H. Daffer, M. J. Schwartz, M. L. Santee, and S. Pawson, 2014: Climatology of upper tropospheric–lower stratospheric (UTLS) jets and tropopauses in MERRA. J. Climate, 27, 32483271, https://doi.org/10.1175/JCLI-D-13-00243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. R., H. Adams, and G. A. Yoshioka, 1964: Coastal storms of the eastern United States. J. Appl. Meteor., 3, 693706, https://doi.org/10.1175/1520-0450(1964)003<0693:CSOTEU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and R. W. Moore, 2017: The baroclinic moisture flux. Mon. Wea. Rev., 145, 2547, https://doi.org/10.1175/MWR-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 3144, https://doi.org/10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2018: Regional snowfall index: The Northeast snowfall impact scale. NOAA/NCEI, accessed 10 October 2018, https://www.ncdc.noaa.gov/snow-and-ice/rsi/nesis.

  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, 603 pp.

  • Petterssen, S., 1956: Weather Analysis and Forecasting. McGraw-Hill, 428 pp.

  • Petterssen, S., and P. A. Calabrese, 1959: On some weather influences due to warming of the air by the Great Lakes in winter. J. Meteor., 16, 646652, https://doi.org/10.1175/1520-0469(1959)016<0646:OSWIDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and A. J. Simmons, 1991: Numerical simulation of an explosively deepening cyclone over the North Atlantic that was unaffected by concurrent surface energy fluxes. Wea. Forecasting, 6, 117122, https://doi.org/10.1175/1520-0434(1991)006<0117:NSOAED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., A. J. Simmons, M. D. Albright, and P. Undén, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Wea. Forecasting, 3, 217229, https://doi.org/10.1175/1520-0434(1988)003<0217:TROLHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, https://doi.org/10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993a: The ERICA IOP 5 storm. Part I: Analysis and simulation. Mon. Wea. Rev., 121, 15771594, https://doi.org/10.1175/1520-0493(1993)121<1577:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993b: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, https://doi.org/10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1974: Frequencies of cyclones and cyclogenesis over North America, 1951–1970. Mon. Wea. Rev., 102, 861868, https://doi.org/10.1175/1520-0493(1974)102<0861:FOCACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1989a: The role of surface heat and moisture fluxes associated with large-scale ocean current meanders in maritime cyclogenesis. Mon. Wea. Rev., 117, 16761694, https://doi.org/10.1175/1520-0493(1989)117<1676:TROSHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1989b: On the statistical analysis of cyclone deepening rates. Mon. Wea. Rev., 117, 22932298, https://doi.org/10.1175/1520-0493(1989)117<2293:OTSAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1993: A diagnostic case study of self-development as an antecedent conditioning process in explosive cyclogenesis. Mon. Wea. Rev., 121, 9761006, https://doi.org/10.1175/1520-0493(1993)121<0976:ADCSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and M. R. Schumann, 2011: Physical processes governing the rapid deepening tail of maritime cyclogenesis. Mon. Wea. Rev., 139, 27762789, https://doi.org/10.1175/MWR-D-10-05002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, E. M., and P. J. Smith, 1980: A synoptic analysis of the 25–26 January 1978 blizzard cyclone in the central United States. Bull. Amer. Meteor. Soc., 61, 453460, https://doi.org/10.1175/1520-0477(1980)061<0453:FOFASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saucier, W. J., 1949: Texas-west Gulf cyclones. Mon. Wea. Rev., 77, 219231, https://doi.org/10.1175/1520-0493(1949)077<0219:TGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPC, 1999: March 12–13, 1993 derecho: “The ‘storm of the century’ or ‘superstorm’ derecho.” NOAA/SPC, accessed 10 October 2018, https://www.spc.noaa.gov/misc/AbtDerechos/casepages/mar12-131993page.htm.

  • Sturges, W., N. G. Hoffmann, and R. R. Leben, 2010: A trigger mechanism for Loop Current ring separations. J. Phys. Oceanogr., 40, 900913, https://doi.org/10.1175/2009JPO4245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, B. C., and J. E. Martin, 2007: A synoptic climatology and composite analysis of the Alberta clipper. Wea. Forecasting, 22, 315333, https://doi.org/10.1175/WAF982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilinina, N., S. K. Gulev, I. Rudeva, and P. Koltermann, 2013: Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Climate, 26, 64196438, https://doi.org/10.1175/JCLI-D-12-00777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., 1973: The role of cumulus convection in the development of extratropical cyclones. Mon. Wea. Rev., 101, 573593, https://doi.org/10.1175/1520-0493(1973)101<0573:TROCCI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112, 3155, https://doi.org/10.1175/1520-0493(1984)112<0031:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962988, https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., R. A. Petersen, K. F. Brill, P. J. Kocin, and J. J. Tuccillo, 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 22272261, https://doi.org/10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., P. J. Kocin, R. S. Schneider, P. M. Stokols, and R. A. Dorr, 1995: Forecasting the 12–14 March 1993 superstorm. Bull. Amer. Meteor. Soc., 76, 183199, https://doi.org/10.1175/1520-0477(1995)076<0183:FTMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and P. J. Sousounis, 1999: A climatology of collective lake disturbances. Mon. Wea. Rev., 127, 565574, https://doi.org/10.1175/1520-0493(1999)127<0565:ACOCLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whittaker, L. M., and L. H. Horn, 1981: Geographical and seasonal distribution of North American cyclogenesis, 1958–1977. Mon. Wea. Rev., 109, 23122322, https://doi.org/10.1175/1520-0493(1981)109<2312:GASDON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Winters, A. C., and J. E. Martin, 2017: Diagnosis of a North American polar–subtropical jet superposition employing piecewise potential vorticity inversion. Mon. Wea. Rev., 145, 18531873, https://doi.org/10.1175/MWR-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WPC, 2010: Midwest high wind event. NOAA/WPC, accessed 13 October 2017, http://www.wpc.ncep.noaa.gov/winter_storm_summaries/event_reviews/2010/Midwest_High_Wind2010.pdf.

  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, https://doi.org/10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1764 450 11
PDF Downloads 1436 341 15