Evaluating U.S. East Coast Winter Storms in a Multimodel Ensemble Using EOF and Clustering Approaches

Minghua Zheng Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Minghua Zheng in
Current site
Google Scholar
PubMed
Close
,
Edmund K. M. Chang School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
, and
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Empirical orthogonal function (EOF) and fuzzy clustering tools were applied to generate and validate scenarios in operational ensemble prediction systems (EPSs) for U.S. East Coast winter storms. The National Centers for Environmental Prediction (NCEP), European Centre for Medium-Range Weather Forecasts (ECMWF), and Canadian Meteorological Centre (CMC) EPSs were validated in their ability to capture the analysis scenarios for historical East Coast cyclone cases at lead times of 1–9 days. The ECMWF ensemble has the best performance for the medium- to extended-range forecasts. During this time frame, NCEP and CMC did not perform as well, but a combination of the two models helps reduce the missing rate and alleviates the underdispersion. All ensembles are underdispersed at all ranges, with combined ensembles being less underdispersed than the individual EPSs. The number of outside-of-envelope cases increases with lead time. For a majority of the cases beyond the short range, the verifying analysis does not lie within the ensemble mean group of the multimodel ensemble or within the same direction indicated by any of the individual model means, suggesting that all possible scenarios need to be taken into account. Using the EOF patterns to validate the cyclone properties, the NCEP model tends to show less intensity and displacement biases during 1–3-day lead time, while the ECMWF model has the smallest biases during 4–6 days. Nevertheless, the ECMWF forecast position tends to be biased toward the southwest of the other two models and the analysis.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0052.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghua Zheng, ming.h.zheng@gmail.com

Abstract

Empirical orthogonal function (EOF) and fuzzy clustering tools were applied to generate and validate scenarios in operational ensemble prediction systems (EPSs) for U.S. East Coast winter storms. The National Centers for Environmental Prediction (NCEP), European Centre for Medium-Range Weather Forecasts (ECMWF), and Canadian Meteorological Centre (CMC) EPSs were validated in their ability to capture the analysis scenarios for historical East Coast cyclone cases at lead times of 1–9 days. The ECMWF ensemble has the best performance for the medium- to extended-range forecasts. During this time frame, NCEP and CMC did not perform as well, but a combination of the two models helps reduce the missing rate and alleviates the underdispersion. All ensembles are underdispersed at all ranges, with combined ensembles being less underdispersed than the individual EPSs. The number of outside-of-envelope cases increases with lead time. For a majority of the cases beyond the short range, the verifying analysis does not lie within the ensemble mean group of the multimodel ensemble or within the same direction indicated by any of the individual model means, suggesting that all possible scenarios need to be taken into account. Using the EOF patterns to validate the cyclone properties, the NCEP model tends to show less intensity and displacement biases during 1–3-day lead time, while the ECMWF model has the smallest biases during 4–6 days. Nevertheless, the ECMWF forecast position tends to be biased toward the southwest of the other two models and the analysis.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0052.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghua Zheng, ming.h.zheng@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 565.23 KB)
Save
  • Booth, J. F., H. E. Rieder, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high-wind events in the northeastern United States. J. Appl. Meteor. Climatol., 54, 18711885, https://doi.org/10.1175/JAMC-D-14-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 10591072, https://doi.org/10.1175/2010BAMS2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev., 125, 99119, https://doi.org/10.1175/1520-0493(1997)125<0099:PFSOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, and M. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, https://doi.org/10.1175/MWR2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., 2013: CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Climate, 26, 99039922, https://doi.org/10.1175/JCLI-D-13-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, M. E., and B. A. Colle, 2009: Verification of extratropical cyclones within the NCEP operational models. Part I: Analysis errors and short-term NAM and GFS forecasts. Wea. Forecasting, 24, 11731190, https://doi.org/10.1175/WAF2222169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and M. E. Charles, 2011: Spatial distribution and evolution of extratropical cyclone errors over North America and its adjacent oceans in the NCEP global forecast system model. Wea. Forecasting, 26, 129149, https://doi.org/10.1175/2010WAF2222422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. F. Booth, and E. K. M. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr. Climate Change Rep., 1, 125143, https://doi.org/10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., and R. Dolan, 1993: Nor’easters. Amer. Sci., 81 (5), 428439.

  • Du, J., and M. S. Tracton, 2001: Implementation of a real-time short-range ensemble forecasting (SREF) at NCEP: An update. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., P4.9, http://ams.confex.com/ams/pdfpapers/23074.pdf.

  • Du, J., and B. Zhou, 2011: A dynamical performance-ranking method for predicting individual ensemble member performance and its application to ensemble averaging. Mon. Wea. Rev., 139, 32843303, https://doi.org/10.1175/MWR-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 24272459, https://doi.org/10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., G. DiMego, M. S. Tracton, and B. Zhou, 2003: NCEP short-range ensemble forecasting (SREF) system: Multi-IC, multi-model and multi-physics approach. J. Cote, Ed., Research Activities in Atmospheric and Oceanic Modelling Rep. 33, WMO/TD 1161, 5.09–5.10.

  • Froude, L. S., 2009: Regional differences in the prediction of extratropical cyclones by the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 137, 893911, https://doi.org/10.1175/2008MWR2610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froude, L. S., 2010: TIGGE: Comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Wea. Forecasting, 25, 819836, https://doi.org/10.1175/2010WAF2222326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froude, L. S., L. Bengtsson, and K. I. Hodges, 2007: The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Mon. Wea. Rev., 135, 25452567, https://doi.org/10.1175/MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, https://doi.org/10.1002/qj.1895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, https://doi.org/10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., L., Magnusson, O. Breivik, F. Prates, I. Tsonevsky, and J. W. de Vries, 2014: Windstorms in northwest Europe in late 2013. ECMWF Newsletter, No. 139, ECMWF, Reading, United Kingdom, 22–28, https://www.ecmwf.int/en/elibrary/17343-windstorms-northwest-europe-late-2013.

  • Hirsch, M. E., A. T. Degaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, https://doi.org/10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, https://doi.org/10.1029/2011GL047275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korfe, N. G., and B. A. Colle, 2017: Evaluation of cool-season extratropical cyclones in a multimodel ensemble for eastern North America and the Western Atlantic Ocean. Wea. Forecasting, 33, 109127, https://doi.org/10.1175/WAF-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Längkvist, M., A. Kiselev, M. Alirezaie, and A. Loutfi, 2016: Classification and segmentation of satellite orthoimagery using convolutional neural networks. Remote Sens., 8, 329, https://doi.org/10.3390/rs8040329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, W. R., W. J. Steenburgh, T. I. Alcott, and J. J. Rutz, 2017: GEFS precipitation forecasts and the implications of statistical downscaling over the western United States. Wea. Forecasting, 32, 10071028, https://doi.org/10.1175/WAF-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, C. G., and E. K. Chang, 2017: Impacts of storm-track variations on wintertime extreme weather events over the Continental United States. J. Climate, 30, 46014624, https://doi.org/10.1175/JCLI-D-16-0560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. R., H. Adams III, and G. A. Yoshioka, 1964: Coastal storms of the eastern United States. J. Appl. Meteor., 3, 693706, https://doi.org/10.1175/1520-0450(1964)003<0693:CSOTEU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and T. Nakazawa, 2015: Early warning products for severe weather events derived from operational medium-range ensemble forecasts. Meteor. Appl., 22, 213222, https://doi.org/10.1002/met.1444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 3144, https://doi.org/10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269298, https://doi.org/10.1002/qj.49711951004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1988: The impact of ensemble forecasts on predictability. Quart. J. Roy. Meteor. Soc., 114, 463493, https://doi.org/10.1002/qj.49711448010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, https://doi.org/10.1175/2007MWR2233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y. Y., R. Buizza, and M. Leutbecher, 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134, 20292050, https://doi.org/10.1002/qj.334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton, and E. Rogers, 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127, 433446, https://doi.org/10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, https://doi.org/10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological center: Practical aspects. Wea. Forecasting, 8, 379398, https://doi.org/10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1999: Spatial patterns: EOFs and CCA. Analysis of Climate Variability, H. von Storch and A. Navarra, Eds., Springer, 231–263.

    • Crossref
    • Export Citation
  • Wang, J., J. Chen, J. Du, Y. Zhang, Y. Xia, and G. Deng, 2018: Sensitivity of ensemble forecast verification to model bias. Mon. Wea. Rev., 146, 781796, https://doi.org/10.1175/MWR-D-17-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 32923302, https://doi.org/10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Yeung, K. Y., and W. L. Ruzzo, 2001: Details of the adjusted rand index and clustering algorithms, supplement to the paper an empirical study on principal component analysis for clustering gene expression data. Bioinformatics, 17, 763774, https://doi.org/10.1093/bioinformatics/17.9.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., E. K. Chang, B. A. Colle, Y. Luo, and Y. Zhu, 2017: Applying fuzzy clustering to a multimodel ensemble for U.S. East Coast winter storms: Scenario identification and forecast verification. Wea. Forecasting, 32, 881903, https://doi.org/10.1175/WAF-D-16-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303322, https://doi.org/10.1175/2009WAF2222289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: A comparison of perturbations from an ensemble transform and an ensemble Kalman filter for the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 20572074, https://doi.org/10.1175/WAF-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1084 187 10
PDF Downloads 847 176 11