The Great Plains Low-Level Jet during PECAN: Observed and Simulated Characteristics

Elizabeth N. Smith School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elizabeth N. Smith in
Current site
Google Scholar
PubMed
Close
,
Joshua G. Gebauer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Joshua G. Gebauer in
Current site
Google Scholar
PubMed
Close
,
Petra M. Klein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Petra M. Klein in
Current site
Google Scholar
PubMed
Close
,
Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Evgeni Fedorovich in
Current site
Google Scholar
PubMed
Close
, and
Jeremy A. Gibbs Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah

Search for other papers by Jeremy A. Gibbs in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the 2015 Plains Elevated Convection at Night (PECAN) field campaign, several nocturnal low-level jets (NLLJs) were observed with integrated boundary layer profiling systems at multiple sites. This paper gives an overview of selected PECAN NLLJ cases and presents a comparison of high-resolution observations with numerical simulations using the Weather Research and Forecasting (WRF) Model. Analyses suggest that simulated NLLJs typically form earlier than the observed NLLJs. They are stronger than the observed counterparts early in the event, but weaker than the observed NLLJs later in the night. However, sudden variations in the boundary layer winds, height of the NLLJ maximum and core region, and potential temperature fields are well captured by the WRF Model. Simulated three-dimensional fields are used for a more focused analysis of PECAN NLLJ cases. While previous studies often related changes in the thermal structure of the nocturnal boundary layer and sudden mixing events to local features, we hypothesize that NLLJ spatial evolution plays an important role in such events. The NLLJ is shown to have heterogeneous depth, wind speed, and wind direction. This study offers detailed documentation of the heterogeneous NLLJ moving down the slope of the Great Plains overnight. As the NLLJ evolves, westerly advection becomes significant. Buoyancy-related mechanisms are proposed to explain NLLJ heterogeneity and down-slope motion. Spatial and temporal heterogeneity of the NLLJ is suggested as a source of the often observed and simulated updrafts during PECAN cases and as a possible mechanism for nocturnal convection initiation. The spatial and temporal characteristics of the NLLJ are interconnected and should not be treated independently.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth N. Smith, elizabeth.n.smith@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

During the 2015 Plains Elevated Convection at Night (PECAN) field campaign, several nocturnal low-level jets (NLLJs) were observed with integrated boundary layer profiling systems at multiple sites. This paper gives an overview of selected PECAN NLLJ cases and presents a comparison of high-resolution observations with numerical simulations using the Weather Research and Forecasting (WRF) Model. Analyses suggest that simulated NLLJs typically form earlier than the observed NLLJs. They are stronger than the observed counterparts early in the event, but weaker than the observed NLLJs later in the night. However, sudden variations in the boundary layer winds, height of the NLLJ maximum and core region, and potential temperature fields are well captured by the WRF Model. Simulated three-dimensional fields are used for a more focused analysis of PECAN NLLJ cases. While previous studies often related changes in the thermal structure of the nocturnal boundary layer and sudden mixing events to local features, we hypothesize that NLLJ spatial evolution plays an important role in such events. The NLLJ is shown to have heterogeneous depth, wind speed, and wind direction. This study offers detailed documentation of the heterogeneous NLLJ moving down the slope of the Great Plains overnight. As the NLLJ evolves, westerly advection becomes significant. Buoyancy-related mechanisms are proposed to explain NLLJ heterogeneity and down-slope motion. Spatial and temporal heterogeneity of the NLLJ is suggested as a source of the often observed and simulated updrafts during PECAN cases and as a possible mechanism for nocturnal convection initiation. The spatial and temporal characteristics of the NLLJ are interconnected and should not be treated independently.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth N. Smith, elizabeth.n.smith@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Ardanuy, P., 1979: On the observed diurnal oscillation of the Somali jet. Mon. Wea. Rev., 107, 16941700, https://doi.org/10.1175/1520-0493(1979)107<1694:OTODOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astling, E. G., J. Paegle, E. Miller, and C. J. O’Brien, 1985: Boundary layer control of nocturnal convection associated with a synoptic scale system. Mon. Wea. Rev., 113, 540552, https://doi.org/10.1175/1520-0493(1985)113<0540:BLCONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P., 1980: The dynamics of the Southerly Buster. Aust. Meteor. Mag., 28 (4), 175200.

  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887, https://doi.org/10.2478/s11600-007-0049-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. Newsom, J. Lundquist, Y. Pichugina, R. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, https://doi.org/10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., W. G. Blumberg, P. M. Klein, and P. B. Chilson, 2015: Thermodynamic and turbulence characteristics of the Southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor., 157, 401420, https://doi.org/10.1007/s10546-015-0072-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1966: Case study of thunderstorm activity in relation to the low-level jet. Mon. Wea. Rev., 94, 167178, https://doi.org/10.1175/1520-0493(1966)094<0167:CSOTAI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brook, R. R., 1985: The Koorin nocturnal low-level jet. Bound.-Layer Meteor., 32, 133154, https://doi.org/10.1007/BF00120932.

  • Delgado, R., B. Carroll, and B. Demoz, 2015: FP2 UMBC Doppler lidar line of sight wind data, version 1.1. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d6q81b4h.

    • Crossref
    • Export Citation
  • Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical study of nocturnal low-level jets over gently sloping terrain. J. Atmos. Sci., 74, 28132834, https://doi.org/10.1175/JAS-D-17-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., E. Fedorovich, and A. Shapiro, 2017: A 1D theoretical analysis of northerly low-level jets over the Great Plains. J. Atmos. Sci., 74, 34193431, https://doi.org/10.1175/JAS-D-16-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night (PECAN) field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and D. Turner, 2016: FP3 University of Manitoba Doppler lidar wind profile data, version 1.0. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d60863p5.

    • Crossref
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 49010 505, https://doi.org/10.1002/jgrd.50823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X.-M. Hu, and M. Xue, 2014: Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, https://doi.org/10.1007/s10546-013-9864-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X.-M. Hu, A. Shapiro, and M. Xue, 2016: Linkages between boundary-layer structure and the development of nocturnal low-level jets in central Oklahoma. Bound.-Layer Meteor., 158, 383408, https://doi.org/10.1007/s10546-015-0097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 430 pp., doi:10.1002/9780470682104.

    • Crossref
    • Export Citation
  • Mirocha, J. D., M. D. Simpson, J. D. Fast, L. K. Berg, and R. Baskett, 2016: Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model. Wind Energy, 19, 739762, https://doi.org/10.1002/we.1862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohya, Y., R. Nakamura, and T. Uchida, 2008: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Bound.-Layer Meteor., 126, 349363, https://doi.org/10.1007/s10546-007-9245-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J., and G. E. Rasch, 1973: Three-dimensional characteristics of diurnally varying boundary-layer flows. Mon. Wea. Rev., 101, 746756, https://doi.org/10.1175/1520-0493(1973)101<0746:TCODVB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Z., M. Segal, and R. W. Arritt, 2004: Role of topography in forcing low-level jets in the central United States during the 1993 flood-altered terrain simulations. Mon. Wea. Rev., 132, 396403, https://doi.org/10.1175/1520-0493(2004)132<0396:ROTIFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2016: A comparative study of the 3 June 2015 Great Plains low-level jet. Mon. Wea. Rev., 144, 29632979, https://doi.org/10.1175/MWR-D-16-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 39373953, https://doi.org/10.1175/JAS-D-17-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. D. Clark, 2017: On the initiation of the 20 June 2015 Great Plains low-level jet. J. Appl. Meteor. Climatol., 56, 18831895, https://doi.org/10.1175/JAMC-D-16-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Päschke, E., R. Leinweber, and V. Lehmann, 2015: An assessment of the performance of a 1.5 μm doppler lidar for operational vertical wind profiling based on a 1-year trial. Atmos. Meas. Tech., 8, 22512266, https://doi.org/10.5194/amt-8-2251-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over Midwest United States. J. Appl. Meteor., 1, 4347, https://doi.org/10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2009: Nocturnal low-level jet over a shallow slope. Acta Geophys., 57, 950980, https://doi.org/10.2478/s11600-009-0026-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, E., J. Gibbs, E. Fedorovich, and P. M. Klein, 2018: WRF Model study of the Great Plains low-level jet: Effects of grid spacing and boundary layer parameterization. J. Appl. Meteor. Climatol., 57, 23752397, https://doi.org/10.1175/JAMC-D-17-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor. Climatol., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G., T. Mauritsen, E. De Bruijn, J. Vilà-Guerau de Arellano, G. Svensson, and A. Holtslag, 2008: Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47, 869887, https://doi.org/10.1175/2007JAMC1702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, https://doi.org/10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, https://doi.org/10.1007/s10546-004-6848-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., 2015: FP3 AERIoe thermodynamic profile retrieval data, version 2.0. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d6z31wv0.

    • Crossref
    • Export Citation
  • Turner, D., 2016a: FP2 AERIoe thermodynamic profile retrieval data, version 1.0. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d6x63k9k.

    • Crossref
    • Export Citation
  • Turner, D., 2016b: MP1 OU/NSSL CLAMPS AERIoe thermodynamic profile retrieval data, version 1.0. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d6vq312c.

    • Crossref
    • Export Citation
  • Turner, D., 2016c: MP1 OU/NSSL CLAMPS Doppler lidar VAD wind data, version 1.0. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d6br8qjh.

    • Crossref
    • Export Citation
  • Turner, D., 2016d: MP1 OU/NSSL CLAMPS Doppler lidar vertical velocity data, version 1.0. UCAR/NCAR, Earth Observing Laboratory, accessed 1 August 2017, doi:10.5065/d6gf0rwh.

    • Crossref
    • Export Citation
  • Turner, D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanderwende, B. J., J. K. Lundquist, M. E. Rhodes, E. S. Takle, and S. L. Irvin, 2015: Observing and simulating the summertime low-level jet in central Iowa. Mon. Wea. Rev., 143, 23192336, https://doi.org/10.1175/MWR-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Wea. Forecasting, 16, 513530, https://doi.org/10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary layer interpretation of the low-level jet. Tellus, 13, 368378, https://doi.org/10.3402/tellusa.v13i3.9513.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, https://doi.org/10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2058 459 101
PDF Downloads 1020 254 14