Tornadogenesis and Early Tornado Evolution in the El Reno, Oklahoma, Supercell on 31 May 2013

Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
,
Kyle J. Thiem National Weather Service, Peachtree City, Georgia

Search for other papers by Kyle J. Thiem in
Current site
Google Scholar
PubMed
Close
,
Jeffrey C. Snyder NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
, and
Jana B. Houser Department of Geography, Ohio University, Athens, Ohio

Search for other papers by Jana B. Houser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study documents the formation and part of the early evolution of a large, violent tornado near El Reno, Oklahoma, based on data from a mobile, polarimetric, rapid scan, X-band, Doppler radar. The main circulation associated with the tornado formed near the ground initially, ~90 s prior to the development of the vertically coherent vortex, which built upward through a vertical column of at least 3.5 km in less than 20 s, the update time of the Doppler radar data. Strong but broad rotation from 500 m to 1.5 km AGL also preceded the formation of the tornado at the surface by several minutes. A precipitation-loaded downdraft was observed in the right-forward flank of the storm, which could have enhanced evaporative cooling and allowed for a faster rate of baroclinic generation of low-level horizontal vorticity, while descending reflectivity cores in the right-rear quadrant might have enhanced low-level convergence to the rear of or along the leading edge of the rear-flank gust front. The intensification of the tornado occurred in spurts, not steadily, perhaps owing to surges in momentum at the surface associated with the precipitation-laden downdrafts. The tornado was highly tilted even when it was intensifying, calling into question the importance of a vertical juxtaposition of the mesocyclone aloft and the tornado at the surface. In this case study, while the development of a weak-echo hole was evidence of rotation, the absence of one did not mean that there was not a strong vortex, owing to the lofting of debris.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0338.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Howard B. Bluestein, hblue@ou.edu

Abstract

This study documents the formation and part of the early evolution of a large, violent tornado near El Reno, Oklahoma, based on data from a mobile, polarimetric, rapid scan, X-band, Doppler radar. The main circulation associated with the tornado formed near the ground initially, ~90 s prior to the development of the vertically coherent vortex, which built upward through a vertical column of at least 3.5 km in less than 20 s, the update time of the Doppler radar data. Strong but broad rotation from 500 m to 1.5 km AGL also preceded the formation of the tornado at the surface by several minutes. A precipitation-loaded downdraft was observed in the right-forward flank of the storm, which could have enhanced evaporative cooling and allowed for a faster rate of baroclinic generation of low-level horizontal vorticity, while descending reflectivity cores in the right-rear quadrant might have enhanced low-level convergence to the rear of or along the leading edge of the rear-flank gust front. The intensification of the tornado occurred in spurts, not steadily, perhaps owing to surges in momentum at the surface associated with the precipitation-laden downdrafts. The tornado was highly tilted even when it was intensifying, calling into question the importance of a vertical juxtaposition of the mesocyclone aloft and the tornado at the surface. In this case study, while the development of a weak-echo hole was evidence of rotation, the absence of one did not mean that there was not a strong vortex, owing to the lofting of debris.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0338.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Howard B. Bluestein, hblue@ou.edu

Supplementary Materials

    • Supplemental Materials (ZIP 62.81 MB)
Save
  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 7296, https://doi.org/10.1175/MWR-2855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and J. Wurman, 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4, https://ams.confex.com/ams/24SLS/techprogram/paper_141821.htm.

  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396406, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2013: Severe Convective Storms and Tornadoes: Observations and Dynamics. Springer, 456 pp.

    • Crossref
    • Export Citation
  • Bluestein, H. B., 2019: Observations of tornadoes and their parent supercells using ground-based, mobile Doppler radars. Remote Sensing and Natural Disasters, Geophys. Monogr., Amer. Geophys. Union, in press.

  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, and R. L. Tanamachi, 2007: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506, https://doi.org/10.1175/MWR3295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600, https://doi.org/10.1175/2009BAMS2914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, and J. C. Snyder, 2016: Doppler radar observations of anticyclonic tornadoes in cyclonically rotating, right-moving supercells. Mon. Wea. Rev., 144, 15911616, https://doi.org/10.1175/MWR-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 24832502, https://doi.org/10.1175/MWR-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2939, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471, https://doi.org/10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byko, Z., P. Markowski, Y. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155186, https://doi.org/10.1175/2008WAF2222116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, https://doi.org/10.1175/MWR-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, https://doi.org/10.1175/MWR2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2014: Mobile, Phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, C. B., C. C. Weiss, A. E. Reinhart, J. C. Snyder, H. B. Bluestein, J. Wurman, and K. A. Kosiba, 2018: In situ and radar observations of the low reflectivity ribbon in supercells during VORTEX2. Mon. Wea. Rev., 146, 307327, https://doi.org/10.1175/MWR-D-17-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2016: A finescale radar examination of the tornadic debris signature and weak-echo reflectivity band associated with a large, violent tornado. Mon. Wea. Rev., 144, 41014130, https://doi.org/10.1175/MWR-D-15-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A., J. M. Straka, and E. N. Rasmussen, 2007: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 11911199, https://doi.org/10.1175/2007WAF2006095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the Atmospheric Imaging Radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y.-C., H. B. Bluestein, M. M. French, and Z. B. Wienhoff, 2018: Single-Doppler velocity retrieval of the wind field in a tornadic supercell using mobile, phased-array, Doppler radar data. J. Atmos. Oceanic Technol., 35, 16491663, https://doi.org/10.1175/JTECH-D-18-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, https://doi.org/10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, J. Marquis, J. Wurman, K. Kosiba, P. Robinson, and D. C. Dowell, 2012a: The pretornadic phase of the Goshen county, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., R. Richardson, J. Wurman, and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, https://doi.org/10.1175/2008MWR2442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, J. Wurman, K. Kosiba, and P. Robinson, 2016: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part II: Mesocyclone-scale processes affecting tornado formation, maintenance, and decay. Mon. Wea. Rev., 144, 34413463, https://doi.org/10.1175/MWR-D-15-0411.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., D. Burgess, G. Garfield, J. Snyder, R. Smith, D. Speheger, and H. Bluestein, 2014: Ground-based damage survey and radar analysis of the El Reno, Oklahoma tornado. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 13.1, https://ams.confex.com/ams/27SLS/webprogram/Paper254342.html.

  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translastion, visualization, editing, and interpolation. Preprints, 29th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile, rapid-scanning, X-band, polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923938, https://doi.org/10.1175/WAF962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and M. K. Yau, 1996: A Short Course in Cloud Physics. Elsevier, 304 pp.

  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 5984, https://doi.org/10.1146/annurev-fluid-011212-140639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K. Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado. Bull. Amer. Meteor. Soc., 97, 20692084, https://doi.org/10.1175/BAMS-D-15-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements of orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and L. M. Leslie, 1978: Tornadogenesis. Quart. J. Roy. Meteor. Soc., 104, 189199, https://doi.org/10.1002/qj.49710443914.

  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, https://doi.org/10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, V. Venkatesh, and S. J. Frasier, 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, https://doi.org/10.1175/MWR-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spilhaus, A. F., 1948: Raindrop size, shape and drop fall speed. J. Meteor., 5, 108110, https://doi.org/10.1175/1520-0469(1948)005<0108:RSSAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, https://doi.org/10.1175/MWR-D-11-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiem, K. J., 2016: Rapid-scan, polarimetric, mobile, Doppler-radar observations of the formation, evolution, and structure of the El Reno Tornado of 31 May 2013. M.S. thesis, School of Meteorology, University of Oklahoma, Norman, OK, 120 pp.

  • Trapp, R. J., and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113133, https://doi.org/10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, K. M. Butler, H. B. Bluestein, K. Thiem, J. Snyder, and J. Houser, 2015: Photogrammetric analysis of the 2013 El Reno tornado combined with mobile X-band polarimetric radar data. Mon. Wea. Rev., 143, 26572683, https://doi.org/10.1175/MWR-D-15-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, https://doi.org/10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 11941204, https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., D. Burgess, A. Seimon, J. Allen, J. Snyder, and H. Bluestein, 2018: Rapid-scan radar observations of an Oklahoma tornadic hailstorm producing giant hail. Wea. Forecasting, 33, 12631282, https://doi.org/10.1175/WAF-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and M. Randall, 2001: An inexpensive, mobile, rapid scan radar. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P3.4, https://ams.confex.com/ams/30radar/techprogram/paper_21577.htm.

  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., C. Alexander, P. Robinson, and Y. Richardson, 2007: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88, 3146, https://doi.org/10.1175/BAMS-88-1-31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3551 1056 68
PDF Downloads 3049 833 60