Adjoint Sensitivity of North Pacific Atmospheric River Forecasts

Carolyn A. Reynolds Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
,
James D. Doyle Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
F. Martin Ralph Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
, and
Reuben Demirdjian Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Search for other papers by Reuben Demirdjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The initial-state sensitivity and optimal perturbation growth for 24- and 36-h forecasts of low-level kinetic energy and precipitation over California during a series of atmospheric river (AR) events that took place in early 2017 are explored using adjoint-based tools from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). This time period was part of the record-breaking winter of 2016–17 in which several high-impact ARs made landfall in California. The adjoint sensitivity indicates that both low-level winds and precipitation are most sensitive to mid- to lower-tropospheric perturbations in the initial state in and near the ARs. A case study indicates that the optimal moist perturbations occur most typically along the subsaturated edges of the ARs, in a warm conveyor belt region. The sensitivity to moisture is largest, followed by temperature and winds. A 1 g kg−1 perturbation to moisture may elicit twice as large a response in kinetic energy and precipitation as a 1 m s−1 perturbation to the zonal or meridional wind. In an average sense, the sensitivity and related optimal perturbations are very similar for the kinetic energy and precipitation response functions. However, on a case-by-case basis, differences in the sensitivity magnitude and optimal perturbation structures result in substantially different forecast perturbations, suggesting that optimal adaptive observing strategies should be metric dependent. While the nonlinear evolved perturbations are usually smaller (by about 20%, on average) than the expected linear perturbations, the optimal perturbations are still capable of producing rapid nonlinear perturbation growth. The positive correlation between sensitivity magnitude and wind speed forecast error or precipitation forecast differences supports the relevance of adjoint-based calculations for predictability studies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carolyn A. Reynolds, carolyn.reynolds@nrlmry.navy.mil

Abstract

The initial-state sensitivity and optimal perturbation growth for 24- and 36-h forecasts of low-level kinetic energy and precipitation over California during a series of atmospheric river (AR) events that took place in early 2017 are explored using adjoint-based tools from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). This time period was part of the record-breaking winter of 2016–17 in which several high-impact ARs made landfall in California. The adjoint sensitivity indicates that both low-level winds and precipitation are most sensitive to mid- to lower-tropospheric perturbations in the initial state in and near the ARs. A case study indicates that the optimal moist perturbations occur most typically along the subsaturated edges of the ARs, in a warm conveyor belt region. The sensitivity to moisture is largest, followed by temperature and winds. A 1 g kg−1 perturbation to moisture may elicit twice as large a response in kinetic energy and precipitation as a 1 m s−1 perturbation to the zonal or meridional wind. In an average sense, the sensitivity and related optimal perturbations are very similar for the kinetic energy and precipitation response functions. However, on a case-by-case basis, differences in the sensitivity magnitude and optimal perturbation structures result in substantially different forecast perturbations, suggesting that optimal adaptive observing strategies should be metric dependent. While the nonlinear evolved perturbations are usually smaller (by about 20%, on average) than the expected linear perturbations, the optimal perturbations are still capable of producing rapid nonlinear perturbation growth. The positive correlation between sensitivity magnitude and wind speed forecast error or precipitation forecast differences supports the relevance of adjoint-based calculations for predictability studies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carolyn A. Reynolds, carolyn.reynolds@nrlmry.navy.mil
Save
  • Amerault, C., X. Zou, and J. D. Doyle, 2008: Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon. Wea. Rev., 136, 21202132, https://doi.org/10.1175/2007MWR2259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., and C. F. Mass, 2006: Structure, growth rates, and tangent linear accuracy of adjoint sensitivities with respect to horizontal and vertical resolution. Mon. Wea. Rev., 134, 29712988, https://doi.org/10.1175/MWR3227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., A. Bogusz, M. J. Lauridsen, and C. J. Nauert, 2018: Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments. Bull. Amer. Meteor. Soc., 99, 615628, https://doi.org/10.1175/BAMS-D-17-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badger, J., and B. J. Hoskins, 2001: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 3849, https://doi.org/10.1175/1520-0469(2001)058<0038:SIVPAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a southern plains convective event. Mon. Wea. Rev., 143, 230249, https://doi.org/10.1175/MWR-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 39974020, https://doi.org/10.1175/JAS-D-15-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, https://doi.org/10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., M. Zheng, and K. Raeder, 2013: Medium-range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211231, https://doi.org/10.1175/MWR-D-11-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. M. Ralph, and F. Vitart, 2018: Global assessment of atmospheric river prediction skill. J. Hydrometeor., 19, 409426, https://doi.org/10.1175/JHM-D-17-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, and C. Amerault, 2011: Diagnosing tropical cyclone sensitivity. Comput. Sci. Eng., 13, 3139, https://doi.org/10.1109/MCSE.2010.146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 35353557, https://doi.org/10.1175/JAS-D-12-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142, 320342, https://doi.org/10.1175/MWR-D-13-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and K. D. Raeder, 1999: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Quart. J. Roy. Meteor. Soc., 125, 169195, https://doi.org/10.1002/qj.49712555310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., K. D. Raeder, and L. Fillion, 2003: Examination of the sensitivity of forecast precipitation rates to possible perturbations of initial conditions. Tellus, 55A, 88105, https://doi.org/10.3402/tellusa.v55i1.12083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686, https://doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 11931206, https://doi.org/10.1175/1520-0469(1989)046<1193:OEOBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, https://doi.org/10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., C. A. Reynolds, R. H. Langland, and G. D. Rohaly, 2000: A predictability study using geostationary satellite wind observations during NORPEX. Mon. Wea. Rev., 128, 37893807, https://doi.org/10.1175/1520-0493(2001)129<3789:APSUGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vazquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2 (2), https://doi.org/10.3389/feart.2014.00002.

    • Crossref
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, C. W., and J. M. Cordeira, 2017: Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over north coastal California. Geophys. Res. Lett., 44, 90489058, https://doi.org/10.1002/2017GL074179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. Berrisford, 1988: A potential vorticity perspective of the storm of 15–16 October 1987. Weather, 43, 122129, https://doi.org/10.1002/j.1477-8696.1988.tb03890.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707719, https://doi.org/10.1002/qj.49710645004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, L., M. Fisher, E. Andersson, and J. Barkmeijer, 2005: The structure and realism of sensitivity perturbations and their interpretation as ‘key analysis errors.’ Quart. J. Roy. Meteor. Soc., 131, 30533078, https://doi.org/10.1256/qj.04.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, B.-J., H. M. Kim, T. Auligné, X. Zhang, X. Zhang, and X.-Y. Huang, 2013: Adjoint-derived observation impact using WRF in the western North Pacific. Mon. Wea. Rev., 141, 40804097, https://doi.org/10.1175/MWR-D-12-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., and B.-J. Jung, 2009: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137, 505524, https://doi.org/10.1175/2008MWR2643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and M. C. Morgan, 2005: Interpretation of the structure and evolution of adjoint-derived forecast sensitivity gradients. Mon. Wea. Rev., 133, 466484, https://doi.org/10.1175/MWR-2865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinker, E., F. Rabier, and R. Gelaro, 1998: Estimation of key analysis errors using the adjoint technique. Quart. J. Roy. Meteor. Soc., 124, 19091933, https://doi.org/10.1002/qj.49712455007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. T. K., S. C. Jones, M. Leutbecher, M. S. Peng, and C. A. Reynolds, 2012: Sensitivity, structure, and dynamics of singular vectors associated with Hurricane Helene (2006). J. Atmos. Sci., 69, 675694, https://doi.org/10.1175/JAS-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, https://doi.org/10.1111/j.1600-0870.2004.00056.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., R. L. Elsberry, and R. M. Errico, 1995: Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity. Quart. J. Roy. Meteor. Soc., 121, 13491386, https://doi.org/10.1002/qj.49712152608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016a: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, https://doi.org/10.1002/2016GL067765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. Pappenberger, D. S. Richardson, and E. Zsoter, 2016b: ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophys. Res. Lett., 43, 11 85211 858, https://doi.org/10.1002/2016GL071320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., M. J. Rodwell, D. S. Richardson, F. M. Ralph, J. D. Doyle, C. A. Reynolds, V. Tallapragada, and F. Pappenberger, 2018: The gauging and modeling of rivers in the sky. Geophys. Res. Lett., 45, 78287834, https://doi.org/10.1029/2018GL079019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL-parameterization of ECMWF. Proc. 1981 ECMWF Workshop on Planetary Boundary Layer Parameterization, Shinfield Park, Reading, United Kingdom, ECMWF, 59–79 .

  • Lynch, S., and R. Schumacher, 2014: Ensemble-based analysis of the May 2010 extreme rainfall in Tennessee and Kentucky. Mon. Wea. Rev., 142, 222239, https://doi.org/10.1175/MWR-D-13-00020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., and B. Bilodeau, 2007: Adjoint sensitivity of surface precipitation to initial conditions. Mon. Wea. Rev., 135, 28792896, https://doi.org/10.1175/MWR3439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 22872303, https://doi.org/10.1175/BAMS-D-14-00259.1.

  • Molinari, J., 1985: General form of Kuo’s cumulus parameterization. Mon. Wea. Rev., 113, 14111416, https://doi.org/10.1175/1520-0493(1985)113<1411:AGFOKC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oortwijn, J., and J. Barkmeijer, 1995: Perturbations that optimally trigger weather regimes. J. Atmos. Sci., 52, 39323944, https://doi.org/10.1175/1520-0469(1995)052<3932:PTOTWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, W. McF., 1907: Stability or instability of the steady motions of a perfect liquid. Proc. Roy. Irish Acad., 21, 969.

  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics and adaptive observations. J. Atmos. Sci., 55, 633653, https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 25082528, https://doi.org/10.1175/JAS3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121150, https://doi.org/10.1002/qj.49712252906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., 2018: Atmospheric river reconnaissance—2018 is underway. Center for Western Weather and Water Extremes, accessed 21 August 2018, http://cw3e.ucsd.edu/atmospheric-river-reconnaissance-2018-underway/.

  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the El Niño winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2016: CalWater field studies designed to quantify the roles of atmospheric rivers and aerosols in modulating U.S. West Coast precipitation in a changing climate. Bull. Amer. Meteor. Soc., 97, 12091228, https://doi.org/10.1175/BAMS-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837839, https://doi.org/10.1175/BAMS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. M. Trigo, M. L. R. Liberato, and T. Ricardo, 2015: Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor., 16, 579597, https://doi.org/10.1175/JHM-D-14-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., 2007: The impact of nonlinearities and model error on pseudo-inverse calculations. Physica D, 230, 159–171.

    • Crossref
    • Export Citation
  • Reynolds, C. A., and T. Rosmond, 2003: Nonlinear growth of singular vector-based perturbations. Quart. J. Roy. Meteor. Soc., 129, 30593078, https://doi.org/10.1256/qj.02.193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., R. Gelaro, and J. Doyle, 2001: Relationship between singular vectors and transient features in the background flow. Quart. J. Roy. Meteor. Soc., 127, 17311760, https://doi.org/10.1002/qj.49712757514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., R. Gelaro, and T. E. Rosmond, 2005: A comparison of variance and total-energy singular-vectors. Quart. J. Roy. Meteor. Soc., 131, 19551973, https://doi.org/10.1256/qj.04.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, R. M. Hodur, and H. Jin, 2010: Naval Research Laboratory multi-scale targeting guidance for T-PARC and TCS-08. Wea. Forecasting, 25, 526544, https://doi.org/10.1175/2009WAF2222292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, and X. Hong, 2016: Examining tropical cyclone–Kelvin wave interactions using adjoint diagnostics. Mon. Wea. Rev., 144, 44214439, https://doi.org/10.1175/MWR-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and F. Harnisch, 2015: Impact of the inflow moisture on the evolution of a warm conveyor belt. Quart. J. Roy. Meteor. Soc., 141, 299310, https://doi.org/10.1002/qj.2360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., A. Dornbrack, H. Wernli, C. Kiemle, and S. Pfahl, 2011: Airborne lidar observations in the inflow region of a warm conveyor belt. Quart. J. Roy. Meteor. Soc., 137, 12571272, https://doi.org/10.1002/qj.827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and Coauthors, 2018: The North Atlantic Waveguide and Downstream Impact Experiment. Bull. Amer. Meteor. Soc., 99, 16071637, https://doi.org/10.1175/BAMS-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R., 2011: Ensemble-based analysis of factors leading to the development of a multiday warm-season heavy rain event. Mon. Wea. Rev., 139, 30163035, https://doi.org/10.1175/MWR-D-10-05022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. C., and Coauthors, 2018: Impact of coupling with an ice–ocean model on global medium-range NWP forecast skill. Mon. Wea. Rev., 146, 11571180, https://doi.org/10.1175/MWR-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N. H., and B. C. Ancell, 2017: Ensemble sensitivity analysis of wind ramp events with applications to observation targeting. Mon. Wea. Rev., 145, 25052522, https://doi.org/10.1175/MWR-D-16-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stappers, R., and J. Barkmeijer, 2011: Properties of singular vectors using convective available potential energy as a final time norm. Tellus, 63A, 373384, https://doi.org/10.1111/j.1600-0870.2010.00501.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, https://doi.org/10.1175/2009MWR2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179183, https://doi.org/10.1038/ngeo2894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II. A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and Z. Meng, 2016: Key synoptic-scale features influencing the high-impact heavy rainfall in Beijing, China, on 21 July 2012. Tellus, 68A, 31045, https://doi.org/10.3402/tellusa.v68.31045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Z. Meng, 2018: Impact of synoptic-scale factors on rainfall forecast in different stages of a persistent heavy rainfall event in South China. J. Geophys. Res. Atmos., 123, 35743593, https://doi.org/10.1002/2017JD028155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., E. K. M. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, https://doi.org/10.1175/WAF-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, F., and X. Cui, 2015: The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China. Atmos. Sci. Lett., 16, 485491, https://doi.org/10.1002/asl.586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 911 216 29
PDF Downloads 576 154 15