Quantification and Exploration of Diurnal Oscillations in Tropical Cyclones

John A. Knaff NOAA/Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by John A. Knaff in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Slocum Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Christopher J. Slocum in
Current site
Google Scholar
PubMed
Close
, and
Kate D. Musgrave Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Kate D. Musgrave in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diurnal oscillations of infrared cloud-top brightness temperatures (Tbs) in tropical cyclones (TCs) as inferred from storm-centered, direction-relative longwave infrared (~11 μm) imagery are quantified for Northern Hemisphere TCs (2005–15) using statistical methods. These methods show that 45%, 54%, and 61% of at least tropical storm-, hurricane-, and major hurricane-strength TC cases have moderate or strong diurnal signals. Principal component analysis–based average behavior of all TCs with intensities of 34 kt (17.5 m s−1) or greater is shown to have a nearly symmetric diurnal signal where Tbs oscillate from warm to cold and cold to warm within and outside of a radius of approximately 220 km, with maximum central cooling occurring in the early morning (0300–0800 local standard time), and a nearly simultaneous maximum warming occurring near the 500-km radius—a radial standing wave with a node near 220-km radius. Amplitude and phase of these diurnal oscillations are quantified for individual 24-h periods (or cases) relative to the mean oscillation. Details of the diurnal behavior of TCs are used to examine preferred storm and environmental characteristics using a combination of spatial, composite, and regression analyses. Results suggest that diurnal, cloud-top Tb oscillations in TCs are strongest and most regular when storm characteristics (e.g., intensity and motion) and environmental conditions (e.g., vertical wind shear and low-level temperature advection) support azimuthally symmetric storm structures and when surrounding mid- and upper-level relative humidity values are greater. Finally, it is hypothesized that larger mid- and upper-level relative humidity values are necessary ingredients for robust, large-amplitude, and regular diurnal oscillations of Tbs in TCs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Knaff, john.knaff@noaa.gov

Abstract

Diurnal oscillations of infrared cloud-top brightness temperatures (Tbs) in tropical cyclones (TCs) as inferred from storm-centered, direction-relative longwave infrared (~11 μm) imagery are quantified for Northern Hemisphere TCs (2005–15) using statistical methods. These methods show that 45%, 54%, and 61% of at least tropical storm-, hurricane-, and major hurricane-strength TC cases have moderate or strong diurnal signals. Principal component analysis–based average behavior of all TCs with intensities of 34 kt (17.5 m s−1) or greater is shown to have a nearly symmetric diurnal signal where Tbs oscillate from warm to cold and cold to warm within and outside of a radius of approximately 220 km, with maximum central cooling occurring in the early morning (0300–0800 local standard time), and a nearly simultaneous maximum warming occurring near the 500-km radius—a radial standing wave with a node near 220-km radius. Amplitude and phase of these diurnal oscillations are quantified for individual 24-h periods (or cases) relative to the mean oscillation. Details of the diurnal behavior of TCs are used to examine preferred storm and environmental characteristics using a combination of spatial, composite, and regression analyses. Results suggest that diurnal, cloud-top Tb oscillations in TCs are strongest and most regular when storm characteristics (e.g., intensity and motion) and environmental conditions (e.g., vertical wind shear and low-level temperature advection) support azimuthally symmetric storm structures and when surrounding mid- and upper-level relative humidity values are greater. Finally, it is hypothesized that larger mid- and upper-level relative humidity values are necessary ingredients for robust, large-amplitude, and regular diurnal oscillations of Tbs in TCs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Knaff, john.knaff@noaa.gov
Save
  • Barnes, S., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and A. H. Perry, 1973: Synoptic Climatology, Methods and Applications. Methuen, 555 pp.

  • Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909, https://doi.org/10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, https://doi.org/10.1175/JCLI-D-14-00804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., and J. Simpson, 1969: Tropical cloudiness and rainfall related to pressure and tidal variations. Quart. J. Roy. Meteor. Soc., 95, 120147, https://doi.org/10.1002/qj.49709540309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864, https://doi.org/10.1175/1520-0493(1977)105<0856:DOOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, W. H. Schubert, and J. H. Ruppert, 2018: Diurnal cycle of the ITCZ in DYNAMO. J. Climate, 31, 45434562, https://doi.org/10.1175/JCLI-D-17-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, https://doi.org/10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. Kaplan, and J. Baik, 1993: Upper-level eddy angular momentum flux and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., J. Molinari, K. L. Corbosiero, and R. G. Fovell, 2019: An objective climatology of tropical cyclone diurnal pulses in the Atlantic basin. Mon. Wea. Rev., 147, 591605, https://doi.org/10.1175/MWR-D-18-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., Y. P. Bu, K. L. Corbosiero, W. Tung, Y. Cao, H. Kuo, L. Hsu, and H. Su, 2016: Influence of cloud microphysics and radiation on tropical cyclone structure and motion. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, 11.1–11.27, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0006.1.

    • Crossref
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal-variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 29012922, https://doi.org/10.1175/1520-0469(1986)043<2901:APMFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyndman, R. J., and G. Athanasopoulos, 2013: Forecasting: Principles and Practice. Open Access Books, http://otexts.org/fpp.

  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and east Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. Demaria, and D. A. Molenar, 2015: Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and G. Chirokova, 2017: A global statistical-dynamical tropical cyclone wind radii forecast scheme. Wea. Forecasting, 32, 629644, https://doi.org/10.1175/WAF-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799811, https://doi.org/10.1175/WAF-D-18-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556, https://doi.org/10.1175/1520-0469(1963)020<0551:TDPCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lajoie, F. A., and I. J. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544, https://doi.org/10.1175/1520-0493(1984)112<0535:OOHLCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: Statistical problems of long-range forecasting. Bull. Amer. Meteor. Soc., 54, 266–266.

  • Leppert, K. D., and D. J. Cecil, 2016: Tropical cyclone diurnal cycle as observed by TRMM. Mon. Wea. Rev., 144, 27932808, https://doi.org/10.1175/MWR-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Gray, 1980: Mass divergence in tropical weather systems Paper II: Large-scale controls on convection. Quart. J. Roy. Meteor. Soc., 106, 517538, https://doi.org/10.1002/qj.49710644909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Q. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, https://doi.org/10.1175/JAS-D-13-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merritt, E. S., and R. Wexler, 1967: Cirrus canopies in tropical storms. Mon. Wea. Rev., 95, 111120, https://doi.org/10.1175/1520-0493(1967)095<0111:CCITS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. A., and W. M. Frank, 1993: Radiative forcing of simulated tropical cloud clusters. Mon. Wea. Rev., 121, 482498, https://doi.org/10.1175/1520-0493(1993)121<0482:RFOSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, https://doi.org/10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal-variations of satellite-measured Tbb areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7790, https://doi.org/10.2151/jmsj1965.61.1_77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., 2015: An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity. Atmos. Chem. Phys., 15, 90039029, https://doi.org/10.5194/acp-15-9003-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., D. Perez-Betancourt, and A. A. Wing, 2017: Accessible environments for diurnal-period waves in simulated tropical cyclones. J. Atmos. Sci., 74, 24892502, https://doi.org/10.1175/JAS-D-16-0294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1947: Diurnal variation of cloudiness over the subtropical Atlantic Ocean. Bull. Amer. Meteor. Soc., 28, 3740, https://doi.org/10.1175/1520-0477-28.1.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberte, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and C. Hohenegger, 2018: Diurnal circulation adjustment and organized deep convection. J. Climate, 31, 48994916, https://doi.org/10.1175/JCLI-D-17-0693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SHIPS, 2018: SHIPS statistical tropical cyclone intensity forecast technique development, developmental data. Accessed 15 August 2018, http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp.

  • Silva Dias, P. L., J. P. Bonatti, and V. E. Kousky, 1987: Diurnally forced tropical tropospheric circulation over South America. Mon. Wea. Rev., 115, 14651478, https://doi.org/10.1175/1520-0493(1987)115<1465:DFTTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1984: The diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 23382344, https://doi.org/10.1175/1520-0493(1984)112<2338:TDVOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Student (William S. Gosset), 1908: The probable error of a mean. Biometrika, 6, 125, https://doi.org/10.1093/biomet/6.1.1.

  • Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, and M. D. Chou, 1996: Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651, https://doi.org/10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 11691180, https://doi.org/10.1175/WAF-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, https://doi.org/10.1175/MWR-D-11-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, H. K., A. B. Long, and L. R. Hoxit, 1977: Some examples of rapidly growing oceanic cumulonimbus clouds. Mon. Wea. Rev., 105, 469476, https://doi.org/10.1175/1520-0493(1977)105<0469:SEORGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Xu, K. M., and D. A. Randall, 1995: Impact of interactive radiative-transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud–radiation interactions. J. Atmos. Sci., 52, 800817, https://doi.org/10.1175/1520-0469(1995)052<0800:IOIRTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., and J. A. Knaff, 2007: Atlantic major hurricanes, 1995–2005: Characteristics based on best-track, aircraft, and IR images. J. Climate, 20, 58655888, https://doi.org/10.1175/2007JCLI1652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 752 142 10
PDF Downloads 398 90 4