Assimilation of Satellite Soil Moisture for Improved Atmospheric Reanalyses

Clara Draper Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Clara Draper in
Current site
Google Scholar
PubMed
Close
and
Rolf H. Reichle Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf H. Reichle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A newly developed, weakly coupled land and atmosphere data assimilation system for NASA’s Global Earth Observing System model is presented, and used to demonstrate the benefit of assimilating satellite soil moisture into an atmospheric reanalysis. Specifically, Advanced Scatterometer and Soil Moisture Ocean Salinity soil moisture retrievals are assimilated into a system that uses the same model, atmospheric assimilation system, and atmospheric observations as the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The atmosphere is sensitive to soil moisture only under certain conditions. Hence, while the globally averaged model improvements were small, regionally, the soil moisture assimilation induced some substantial improvements. For example, in a large region spanning from western Europe across southern Russia, the soil moisture assimilation decreased the RMSE against independent station observations of daily maximum 2-m temperature () by up to 0.4 K, and of 2-m specific humidity (q2m) by up to 0.5 g kg−1. Over all available stations, the mean RMSE was reduced from 2.82 to 2.79 K, while the mean q2m RMSE was reduced from 1.25 to 1.20 g kg−1. The soil moisture assimilation also reduced the mean RMSE across 29 flux tower sites from 34.2 to 32.6 W m−2 for latent heating, and from 37.7 to 36.5 W m−2 for sensible heating. For all variables evaluated, the soil moisture assimilation improved the model at monthly to seasonal, rather than daily, time scales. Based on the above experiments, it is recommended that satellite soil moisture be assimilated into future reanalyses, including the follow-on to MERRA-2.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clara Draper, clara.draper@noaa.gov

Abstract

A newly developed, weakly coupled land and atmosphere data assimilation system for NASA’s Global Earth Observing System model is presented, and used to demonstrate the benefit of assimilating satellite soil moisture into an atmospheric reanalysis. Specifically, Advanced Scatterometer and Soil Moisture Ocean Salinity soil moisture retrievals are assimilated into a system that uses the same model, atmospheric assimilation system, and atmospheric observations as the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The atmosphere is sensitive to soil moisture only under certain conditions. Hence, while the globally averaged model improvements were small, regionally, the soil moisture assimilation induced some substantial improvements. For example, in a large region spanning from western Europe across southern Russia, the soil moisture assimilation decreased the RMSE against independent station observations of daily maximum 2-m temperature () by up to 0.4 K, and of 2-m specific humidity (q2m) by up to 0.5 g kg−1. Over all available stations, the mean RMSE was reduced from 2.82 to 2.79 K, while the mean q2m RMSE was reduced from 1.25 to 1.20 g kg−1. The soil moisture assimilation also reduced the mean RMSE across 29 flux tower sites from 34.2 to 32.6 W m−2 for latent heating, and from 37.7 to 36.5 W m−2 for sensible heating. For all variables evaluated, the soil moisture assimilation improved the model at monthly to seasonal, rather than daily, time scales. Based on the above experiments, it is recommended that satellite soil moisture be assimilated into future reanalyses, including the follow-on to MERRA-2.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clara Draper, clara.draper@noaa.gov
Save
  • Albergel, C., and Coauthors, 2008: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., 12, 13231337, https://doi.org/10.5194/hess-12-1323-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bélair, S., L.-P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. J. Hydrometeor., 4, 352370, https://doi.org/10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, J., and Coauthors, 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor., 14, 977988, https://doi.org/10.1175/JHM-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A., 2009: Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst., 1 (3), https://doi.org/10.3894/JAMES.2009.1.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bircher, S., N. Skou, K. Jensen, J. Walker, and L. Rasmussen, 2012: A soil moisture and temperature network for SMOS validation in western Denmark. Hydrol. Earth Syst. Sci., 16, 14451463, https://doi.org/10.5194/hess-16-1445-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S., L. Takacs, A. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candy, B., R. Saunders, D. Ghent, and C. Bulgin, 2017: The impact of satellite-derived land surface temperatures on numerical weather prediction analyses and forecasts. J. Geophys. Res. Atmos., 122, 97839802, https://doi.org/10.1002/2016JD026417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M., S. Bélair, and B. Bilodeau, 2015: The Canadian land data assimilation system (CaLDAS): Description and synthetic evaluation study. J. Hydrometeor., 16, 12931314, https://doi.org/10.1175/JHM-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M., B. Bilodeau, S. Bélair, M. Abrahamowicz, A. Russell, and X. Wang, 2019: Assimilation of passive L-band microwave brightness temperatures in the Canadian land data assimilation system: Impacts on short-range warm season numerical weather prediction. J. Hydrometeor., https://doi.org/10.1175/JHM-D-18-0133.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., and R. Reichle, 2016: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol. Earth Syst. Sci., 20, 48954911, https://doi.org/10.5194/hess-20-4895-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, 2013: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quart. J. Roy. Meteor. Soc., 139, 11991213, https://doi.org/10.1002/qj.2023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dharssi, I., K. Bovis, B. Macpherson, and C. Jones, 2011: Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol. Earth Syst. Sci., 15, 27292746, https://doi.org/10.5194/hess-15-2729-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., and S. Halder, 2016: Sensitivity of numerical weather forecasts to initial soil moisture variations in CFSv2. Wea. Forecasting, 31, 19731983, https://doi.org/10.1175/WAF-D-16-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2011: The International soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, https://doi.org/10.5194/hess-15-1675-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, vzj2012.0097, https://doi.org/10.2136/vzj2012.0097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., and R. Reichle, 2015: The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual timescales. Hydrol. Earth Syst. Sci., 19, 48314844, https://doi.org/10.5194/hess-19-4831-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., and R. Reichle, 2018: Observation error specification for near-surface soil moisture assimilation: Does it matter? 32nd Conf. on Hydrology, Austin, TX, Amer. Meteor. Soc., 877, https://ams.confex.com/ams/98Annual/webprogram/Paper333179.html.

  • Draper, C., J.-F. Mahfouf, and J. Walker, 2011: Root-zone soil moisture from the assimilation of screen-level variables and remotely sensed soil moisture. J. Geophys. Res., 116, D02127, https://doi.org/10.1029/2010JD013829.

    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, G. De Lannoy, and Q. Liu, 2012: Assimilation of passive and active microwave soil moisture retrievals. Geophys. Res. Lett., 39, L04401, https://doi.org/10.1029/2011GL050655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, R. de Jeu, V. Naeimi, R. Parinussa, and W. Wagner, 2013: Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ., 137, 288298, https://doi.org/10.1016/j.rse.2013.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C., R. Reichle, and R. Koster, 2018: Assessment of MERRA-2 land surface energy flux estimates. J. Climate, 31, 671691, https://doi.org/10.1175/JCLI-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., and P. Viterbo, 2007: Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135, 300314, https://doi.org/10.1175/MWR3309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, R., K. Willett, D. Parker, and L. Mitchell, 2016: Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst., 5, 473491, https://doi.org/10.5194/gi-5-473-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entin, J., A. Robock, K. Vinnikov, S. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 86511 877, https://doi.org/10.1029/2000JD900051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairbairn, D., A. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati, 2015: Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions. Hydrol. Earth Syst. Sci., 19, 48114830, https://doi.org/10.5194/hess-19-4811-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fluxnet, 2015: FLUXNET2015 dataset. Fluxdata, U.S. Department of Energy, Office of Science, accessed 9 August 2016, http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/.

  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.

  • Hess, H., 2001: Assimilation of screen-level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77, 145154, https://doi.org/10.1007/s007030170023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D., D. Parrish, J. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., M. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., Z. Guo, R. Yang, P. Dirmeyer, K. Mitchell, and M. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335, https://doi.org/10.1175/2009JCLI2832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765, https://doi.org/10.1175/JHM-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30, 15341547, https://doi.org/10.1175/1520-0450(1991)030<1534:AOSMFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M., I. Durre, R. Vose, B. Gleason, and T. Houston, 2012a: An overview of the global historical climatology network-daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M., and Coauthors, 2012b: Global Historical Climatology Network–Daily (GHCN-Daily), version 3.24. NOAA National Climatic Data Center, accessed 10 April 2018, https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Milbrandt, J., S. Bélair, M. Faucher, M. Vallee, M. Carrera, and A. Glazer, 2016: The Pan-Canadian High Resolution (2.5 km) Deterministic Prediction System. Wea. Forecasting, 31, 17911816, https://doi.org/10.1175/WAF-D-16-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz Sabater, J., L. Jarlan, J.-C. Calvet, F. Bouyssel, and P. De Rosnay, 2007: From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeor., 8, 194206, https://doi.org/10.1175/JHM571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naeimi, V., K. Scipal, Z. Bartalis, S. Hasenauer, and W. Wagner, 2009: An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens., 47, 19992013, https://doi.org/10.1109/TGRS.2008.2011617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliva, R., E. Daganzo, Y. Kerr, S. Mecklenburg, S. Nieto, P. Richaume, and C. Gruhier, 2012: SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans. Geosci. Remote Sens., 50, 14271439, https://doi.org/10.1109/TGRS.2012.2182775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C., S. Kumar, D. Mocko, and Y. Tian, 2011: Estimating evapotranspiration with land data assimilation systems. Hydrol. Processes, 25, 39793992, https://doi.org/10.1002/hyp.8387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., and R. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophy. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., J. Walker, R. Koster, and P. Houser, 2002: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3, 728740, https://doi.org/10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., R. Koster, J. Dong, and A. Berg, 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5, 430442, https://doi.org/10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., C. Draper, Q. Liu, M. Girotto, S. Mahanama, R. Koster, and G. D. Lannoy, 2017a: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 29372960, https://doi.org/10.1175/JCLI-D-16-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., Q. Liu, R. Koster, C. Draper, S. Mahanama, and G. Partyka, 2017b: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Coauthors, 2017c: Global assessment of the SMAP level-4 surface and root-zone soil moisture product using assimilation diagnostics. J. Hydrometeor., 18, 32173237, https://doi.org/10.1175/JHM-D-17-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2008-104606, Vol. 27, 118 pp.

  • Rodriguez, E., J. Navascues, and S. Ayuso, and S. Järvenoja, 2003: Analysis of surface variables and parameterisation of surface processes in HIRLAM. Part 1: Approach and verification by parallel runs. HIRLAM Tech. Rep. 59, Norrköping, Sweden, 52 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tagesson, T., and Coauthors, 2015: Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability. Global Change Biol., 21, 250264, https://doi.org/10.1111/gcb.12734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todling, R., and A. El Akkraoui, 2018: The GMAO hybrid ensemble-variational atmospheric data assimilation system: Version 2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2018-104606, Vol. 50, 184 pp.

  • USGS, 2000: Global land cover characteristics data base, version 2.0. Accessed 14 May 2019, https://www.usgs.gov/media/images/global-land-cover-characteristics-data-base-version-20.

  • van den Hurk, B., F. Doblas-Reyes, G. Balsamo, R. Koster, S. Seneviratne, and H. Camargo, 2012: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dyn., 38, 349362, https://doi.org/10.1007/s00382-010-0956-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnikov, K., A. Robock, N. Speranskaya, and C. Sclosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101, 71637174, https://doi.org/10.1029/95JD02753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., G. Lemoine, and H. Rott, 1999: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 191207, https://doi.org/10.1016/S0034-4257(99)00036-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., K. Scipal, C. Pathe, D. Gerten, W. Lucht, and B. Rudolf, 2003: Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res., 108, 4611, https://doi.org/10.1029/2003JD003663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zacharias, S., and Coauthors, 2011: A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10, 955973, https://doi.org/10.2136/vzj2010.0139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zreda, M., W. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem, 2012: COSMOS: The Cosmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci., 16, 40794099, https://doi.org/10.5194/hess-16-4079-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1246 317 58
PDF Downloads 848 215 25