A Hybrid Stochastically Perturbed Parametrization Scheme in a Convection-Permitting Ensemble

Clemens Wastl Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Clemens Wastl in
Current site
Google Scholar
PubMed
Close
,
Yong Wang Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
,
Aitor Atencia Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Aitor Atencia in
Current site
Google Scholar
PubMed
Close
, and
Christoph Wittmann Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

Search for other papers by Christoph Wittmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Model error in ensemble prediction systems is often represented by either a tendency perturbation approach or a process-based parameter perturbation scheme. In this paper a novel hybrid stochastically perturbed parameterization (HSPP) scheme is proposed and implemented in the Convection Permitting Limited Area Ensemble Forecasting (C-LAEF) system developed at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG). In HSPP, the individual parameterization tendencies of the physical processes radiation, shallow convection, and microphysics are perturbed stochastically by a spatially and temporally varying pattern. Uncertainties in the turbulence scheme are considered by perturbing key parameters on the process level. The proposed scheme HSPP features several advantages compared to the popular stochastically perturbed parameterization tendencies (SPPT) scheme: it considers a more physically consistent relationship between different parameterization schemes, deals with uncertainties especially adapted to the individual physical processes, respects conservation laws of energy and moisture, and eliminates the tapering function that has to be introduced to the SPPT scheme because of mainly numerical reasons. The hybrid scheme HSPP is evaluated over one summer and one winter month and compared to a reference ensemble without any stochastic physics perturbations and to two versions of the SPPT scheme. The results show that HSPP significantly increases the ensemble spread of temperature, humidity, wind speed, and pressure, especially in the lower levels of the atmosphere where a tapering function is active in the original SPPT approach. Precipitation verification yields a generally improved probabilistic performance of the HSPP scheme in summer when convection is dominating, which has also been demonstrated in a case study.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong Wang, yong.wang@zamg.ac.at

Abstract

Model error in ensemble prediction systems is often represented by either a tendency perturbation approach or a process-based parameter perturbation scheme. In this paper a novel hybrid stochastically perturbed parameterization (HSPP) scheme is proposed and implemented in the Convection Permitting Limited Area Ensemble Forecasting (C-LAEF) system developed at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG). In HSPP, the individual parameterization tendencies of the physical processes radiation, shallow convection, and microphysics are perturbed stochastically by a spatially and temporally varying pattern. Uncertainties in the turbulence scheme are considered by perturbing key parameters on the process level. The proposed scheme HSPP features several advantages compared to the popular stochastically perturbed parameterization tendencies (SPPT) scheme: it considers a more physically consistent relationship between different parameterization schemes, deals with uncertainties especially adapted to the individual physical processes, respects conservation laws of energy and moisture, and eliminates the tapering function that has to be introduced to the SPPT scheme because of mainly numerical reasons. The hybrid scheme HSPP is evaluated over one summer and one winter month and compared to a reference ensemble without any stochastic physics perturbations and to two versions of the SPPT scheme. The results show that HSPP significantly increases the ensemble spread of temperature, humidity, wind speed, and pressure, especially in the lower levels of the atmosphere where a tapering function is active in the original SPPT approach. Precipitation verification yields a generally improved probabilistic performance of the HSPP scheme in summer when convection is dominating, which has also been demonstrated in a case study.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong Wang, yong.wang@zamg.ac.at
Save
  • Baker, L., A. Rudd, S. Migliorini, and R. Bannister, 2014: Representation of model error in a convective-scale ensemble prediction system. Nonlinear Processes Geophys., 21, 1939, https://doi.org/10.5194/npg-21-19-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bénard, P., J. Vivoda, J. Mašek, P. Smolıková, K. Yessad, C. Smith, R. Brožková, and J. F. Geleyn, 2010: Dynamical kernel of the Aladin–NH spectral limited-area model: Revised formulation and sensitivity experiments. Quart. J. Roy. Meteor. Soc., 136, 155169, https://doi.org/10.1002/qj.522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Steinheimer, P. Bechtold, and J. F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, https://doi.org/10.1002/qj.2108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and Coauthors, 2017: The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Wea. Rev., 145, 19191935, https://doi.org/10.1175/MWR-D-16-0417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, https://doi.org/10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, https://doi.org/10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901, https://doi.org/10.1175/2009MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2015: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 25252544, https://doi.org/10.1175/JAS-D-14-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., S.-J. Lock, I. M. Moroz, and T. N. Palmer, 2017: Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme. Quart. J. Roy. Meteor. Soc., 143, 21682181, https://doi.org/10.1002/qj.3075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418, https://doi.org/10.1002/qj.49710243210.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., C. Snyder, S. Y. Ha, and M. Pocernich, 2011: Linear and non-linear response to parameter variations in a mesoscale model. Tellus, 63A, 429444, https://doi.org/10.1111/j.1600-0870.2010.00505.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., A. Kann, C. Wittmann, G. Pistotnik, B. Bica, and C. Gruber, 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the eastern alpine region. Wea. Forecasting, 26, 166183, https://doi.org/10.1175/2010WAF2222451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iversen, T., A. Deckmyn, C. Santos, K. Sattler, J. B. Bremnes, H. Feddersen, and I. Frogner, 2011: Evaluation of ‘GLAMEPS’—A proposed multimodel EPS for short range forecasting. Tellus, 63A, 513530, https://doi.org/10.1111/j.1600-0870.2010.00507.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., and J. Beck, 2019: Stochastically perturbed parameterizations in an HRRR-based ensemble. Mon. Wea. Rev., 147, 153173, https://doi.org/10.1175/MWR-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kober, K., and G. C. Craig, 2016: Physically based stochastic perturbations (PSP) in the boundary layer to represent uncertainty in convective initiation. J. Atmos. Sci., 73, 28932911, https://doi.org/10.1175/JAS-D-15-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 23152339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascart, P. J., and P. Bougeault, 2011: The Meso-NH atmospheric simulation system: Scientific documentation, Part III: Physics. Tech. Rep., Meteo-France, 153 pp., http://mesonh.aero.obs-mip.fr/mesonh/dir_doc/book1_m48_19jan2009/scidoc_p3.pdf.

  • Nielsen, E. R., and R. S. Schumacher, 2016: Using convection-allowing ensembles to understand the predictability of an extreme rainfall event. Mon. Wea. Rev., 144, 36513676, https://doi.org/10.1175/MWR-D-16-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrisations in the ECMWF ensemble. Quart. J. Roy. Meteor. Soc., 143, 408422, https://doi.org/10.1002/qj.2931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp., https://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.

  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87104, https://doi.org/10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, https://doi.org/10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and A. C. Pallares, 2014: Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models. Philos. Trans. Roy. Soc. London, A372, 20130284, https://doi.org/10.1098/rsta.2013.0284.

    • Search Google Scholar
    • Export Citation
  • Szűcs, M., 2016: SPPT in AROME and ALARO. HIRLAM Working Week on EPS and Predictability 2016-2, Helsinki, Finland, ALADIN, 35 pp.

  • Termonia, P., and Coauthors, 2018: The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geosci. Model Dev., 11, 257281, https://doi.org/10.5194/gmd-11-257-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2011: The Central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, https://doi.org/10.1002/qj.751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2017: Integrating nowcasting with crisis management and risk prevention in a transnational and interdisciplinary framework. Meteor. Z., 26, 459473, https://doi.org/10.1127/metz/2017/0843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2018: 27 years of Regional Cooperation for Limited Area Modelling in Central Europe. Bull. Amer. Meteor. Soc., 99, 14151432, https://doi.org/10.1175/BAMS-D-16-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wastl, C., Y. Wang, A. Atencia, and C. Wittmann, 2019: Independent perturbations for physics parametrization tendencies in a convection-permitting ensemble (pSPPT). Geosci. Model Dev., 12, 261273, https://doi.org/10.5194/gmd-12-261-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., S. Corti, T. N. Palmer, and F. Vitart, 2014: Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philos. Trans. Roy. Soc. London, A372, 20130290, https://doi.org/10.1098/rsta.2013.0290.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 439 145 13
PDF Downloads 401 71 8