Diurnal Cycle of Surface Winds in the Maritime Continent Observed through Satellite Scatterometry

Ewan Short School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Ewan Short in
Current site
Google Scholar
PubMed
Close
,
Claire L. Vincent School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Claire L. Vincent in
Current site
Google Scholar
PubMed
Close
, and
Todd P. Lane School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Todd P. Lane in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnal cycle of surface winds throughout the Maritime Continent plays a significant role in the formation of precipitation over the islands of the region and over the surrounding seas. This study investigates the connection between the diurnal cycles of surface wind and offshore precipitation using data from four satellite scatterometer instruments and two satellite precipitation radar instruments. For the first time, data from three scatterometer instruments are combined to yield a more temporally complete picture of the surface wind diurnal cycles over the Maritime Continent’s surrounding seas. The results indicate that land–sea breezes typically propagate over 400 km offshore, produce mean wind perturbations of between 1 and 5 m s−1, and propagate as gravity waves at 25–30 m s−1. Diurnal precipitation cycles are affected through gravity wave propagation processes associated with the land–sea breezes, and through the convergence of land breezes from nearby islands. These observational results are then compared with previous mesoscale modeling results. It is shown that land–sea breezes occur too early, and are too intense in these modeling results, and this may partly explain why these modeling results also exhibit an early, overly intense diurnal precipitation cycle. This study also investigates variations in the diurnal cycle of surface winds at seasonal and intraseasonal time scales. Previous work has suggested that seasonal and intraseasonal variations in surface heating affect the land–sea breeze circulation and diurnal precipitation cycles; we argue that variations in background winds also play a defining role in modulating coastally influenced local winds.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ewan Short, shorte1@student.unimelb.edu.au

Abstract

The diurnal cycle of surface winds throughout the Maritime Continent plays a significant role in the formation of precipitation over the islands of the region and over the surrounding seas. This study investigates the connection between the diurnal cycles of surface wind and offshore precipitation using data from four satellite scatterometer instruments and two satellite precipitation radar instruments. For the first time, data from three scatterometer instruments are combined to yield a more temporally complete picture of the surface wind diurnal cycles over the Maritime Continent’s surrounding seas. The results indicate that land–sea breezes typically propagate over 400 km offshore, produce mean wind perturbations of between 1 and 5 m s−1, and propagate as gravity waves at 25–30 m s−1. Diurnal precipitation cycles are affected through gravity wave propagation processes associated with the land–sea breezes, and through the convergence of land breezes from nearby islands. These observational results are then compared with previous mesoscale modeling results. It is shown that land–sea breezes occur too early, and are too intense in these modeling results, and this may partly explain why these modeling results also exhibit an early, overly intense diurnal precipitation cycle. This study also investigates variations in the diurnal cycle of surface winds at seasonal and intraseasonal time scales. Previous work has suggested that seasonal and intraseasonal variations in surface heating affect the land–sea breeze circulation and diurnal precipitation cycles; we argue that variations in background winds also play a defining role in modulating coastally influenced local winds.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ewan Short, shorte1@student.unimelb.edu.au
Save
  • Bergemann, M., C. Jakob, and T. P. Lane, 2015: Global detection and analysis of coastline-associated rainfall using an objective pattern recognition technique. J. Climate, 28, 72257236, https://doi.org/10.1175/JCLI-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. E. Hassim, 2016: Scale interactions between the MJO and the western Maritime Continent. J. Climate, 29, 24712492, https://doi.org/10.1175/JCLI-D-15-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. L., C. L. Vincent, T. P. Lane, E. Short, and H. Nguyen, 2017: Scatterometer estimates of the tropical sea-breeze circulation near Darwin, with comparison to regional models. Quart. J. Roy. Meteor. Soc., 143, 28182831, https://doi.org/10.1002/qj.3131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2018: Madden-Julian Oscillation (MJO). Accessed 2 November 2018, http://www.bom.gov.au/climate/mjo/.

  • Dai, A., and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res., 104, 31 10931 125, https://doi.org/10.1029/1999JD900927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2018: Diurnal cycle of rainfall and winds near the south coast of China. J. Atmos. Sci., 75, 20652082, https://doi.org/10.1175/JAS-D-17-0397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Earth Observation Portal, 2018a: HY-2A (Haiyang-2A)/Ocean-2A. Accessed 2 November 2018, https://directory.eoportal.org/web/eoportal/satellite-missions/h/hy-2a.

  • Earth Observation Portal, 2018b: MetOp (Meteorological Operational Satellite Program of Europe). Accessed 2 November 2018, https://directory.eoportal.org/web/eoportal/satellite-missions/m/metop.

  • Gille, S. T., S. G. Llewellyn Smith, and S. M. Lee, 2003: Measuring the sea breeze from QuikSCAT scatterometry. Geophys. Res. Lett., 30, 1114, https://doi.org/10.1029/2002GL016230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., S. G. Llewellyn Smith, and N. Statom, 2005: Global observations of the land breeze. Geophys. Res. Lett., 32, L05605, https://doi.org/10.1029/2004GL022139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassim, M. E. E., T. P. Lane, and W. W. Grabowski, 2016: The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations. Atmos. Chem. Phys., 16, 161175, https://doi.org/10.5194/acp-16-161-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollander, M., D. A. Wolfe, and E. Chicken, 2014: Nonparametric Statistical Methods. 3rd ed. Wiley, 848 pp.

    • Crossref
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., S. C. van den Heever, and J. S. Johnson, 2018: Meteorological and land surface properties impacting sea breeze extent and aerosol distribution in a dry environment. J. Geophys. Res. Atmos., 123, 2237, https://doi.org/10.1002/2017JD027339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Indian Space Research Organisation, 2007: Oceansat-2. Publications and Public Relations ISRO Headquarters, accessed 2 November 2018, https://directory.eoportal.org/web/eoportal/satellite-missions/o/oceansat-2.

  • Kilpatrick, T., S.-P. Xie, and T. Nasuno, 2017: Diurnal convection-wind coupling in the Bay of Bengal. J. Geophys. Res. Atmos., 122, 97059720, https://doi.org/10.1002/2017JD027271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A., and J. L. Evans, 2018: Introduction to tropical meteorology. Accessed 2 November 2018, http://www.meted.ucar.edu/tropical/textbook_2nd_edition/.

  • Liu, C., and M. W. Moncrieff, 1996: A numerical study of the effects of ambient flow and shear on density currents. Mon. Wea. Rev., 124, 22822303, https://doi.org/10.1175/1520-0493(1996)124<2282:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and T. P. Lane, 2015: Long-lived mesoscale systems in a low-convective inhibition environment. Part II: Downshear propagation. J. Atmos. Sci., 72, 43194336, https://doi.org/10.1175/JAS-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moroni, D., B. Stiles, and A. Fore, 2013: Oceansat-2 level 2B user guide. Tech. Rep. CL 13-1002, California Institute of Technology, Pasadena, CA, accessed 2 November 2018, 16 pp., ftp://podaac.jpl.nasa.gov/OceanWinds/oceansat2/L2B/oscat/jpl/docs/os2_oscat_l2b_ug_v1_0.pdf.

  • Moroni, D., B. Stiles, D. Tyler, and A. Fore, 2016: Rapidscat level 2B netCDF guide document. Tech. Rep. CL 16-1418, California Institute of Technology, Pasadena, CA, accessed 2 November 2018, 31 pp., ftp://podaac.jpl.nasa.gov/allData/rapidscat/L2B12/docs/rscat_l2b_user_guide_v1.pdf.

  • NASA, 2018a: Global precipitation measurement. NASA, accessed 2 November 2018, http://pmm.nasa.gov/gpm.

  • NASA, 2018b: Physical Oceanography Distributed Active Archive Center. NASA, accessed 2 November 2018, https://podaac.jpl.nasa.gov/.

  • NASA, 2018c: STORM. NASA, accessed 2 November 2018, https://storm.pps.eosdis.nasa.gov/storm.

  • NASA, 2018d: Tropical Rainfall Measuring Mission. NASA, accessed 2 November 2018, https://trmm.gsfc.nasa.gov/.

  • NOAA, 2018: Cold & warm episodes by season. NASA, accessed 2 November 2018, http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

  • NOAA, 2019: NOAA daily (non-interpolated) outgoing longwave radiation (OLR). NASA, accessed 2 November 2018, https://www.esrl.noaa.gov/psd/data/gridded/data.uninterp_OLR.html#detail.

  • National Satellite Ocean Application Service, 2013: HY-2A satellite user’s guide. Tech. Rep., National Satellite Ocean Application Service, Beijing, China, 7 pp., https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_HY-2A_USER_GUIDE&RevisionSelectionMethod=LatestReleased&Rendition=Web.

  • National Satellite Ocean Application Service, 2018: National Satellite Ocean Application Service. Accessed 2 November 2018, http://nsoas.org.cn/.

  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, https://doi.org/10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nel, D., and C. V. D. Merwe, 1986: A solution to the multivariate Behrens-Fisher problem. Commun. Stat. Theory Methods, 15, 37193735, https://doi.org/10.1080/03610928608829342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, T., C. C. Epifanio, and F. Zhang, 2009: Linear theory calculations for the sea breeze in a background wind: The equatorial case. J. Atmos. Sci., 66, 17491763, https://doi.org/10.1175/2008JAS2851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, T., C. C. Epifanio, and F. Zhang, 2012: Topographic effects on the tropical land and sea breeze. J. Atmos. Sci., 69, 130149, https://doi.org/10.1175/JAS-D-11-011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, https://doi.org/10.1175/2010JCLI3673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rencher, A. C., 1998: Multivariate Statistical Inference and Applications. Wiley, 592 pp.

  • Robinson, F. J., M. D. Patterson, and S. C. Sherwood, 2013: A numerical modeling study of the propagation of idealized sea-breeze density currents. J. Atmos. Sci., 70, 653668, https://doi.org/10.1175/JAS-D-12-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, https://doi.org/10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royal Netherlands Meteorological Institute, 2013: ASCAT wind product user manual (v1.13). Royal Netherlands Meteorological Institute, 23 pp., http://projects.knmi.nl/scatterometer/old_manuals/ss3_pm_ascat_1.13.pdf.

  • Short, E., 2018: eshort0401/scatterometer_composites. Accessed 2 November 2018, https://github.com/eshort0401/scatterometer_composites.

  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, https://doi.org/10.1175/2007JAS2353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoef, A., M. Portabella, and A. Stoffelen, 2012: High-resolution ASCAT scatterometer winds near the coast. IEEE Trans. Geosci. Remote Sens., 50, 24812487, https://doi.org/10.1109/TGRS.2011.2175001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2016a: Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Mon. Wea. Rev., 144, 19832005, https://doi.org/10.1175/MWR-D-15-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2016b: Maritime Continent austral summer climatology v1.0. NCI National Research Data Collection, digital media, accessed 2 November 2018, http://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f5210_8718_6512_7201.

  • Vincent, C. L., and T. P. Lane, 2017: A 10-year austral summer climatology of observed and modeled intraseasonal, mesoscale, and diurnal variations over the Maritime Continent. J. Climate, 30, 38073828, https://doi.org/10.1175/JCLI-D-16-0688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wu, Q., and G. Chen, 2015: Validation and intercomparison of HY-2A/MetOp-A/Oceansat-2 scatterometer wind products. Chin. J. Oceanol. Limnol., 33, 11811190, https://doi.org/10.1007/s00343-015-4160-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1958 718 99
PDF Downloads 1098 256 16