What Is the Impact of Additional Tropical Observations on a Modern Data Assimilation System?

Laura C. Slivinski Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Laura C. Slivinski in
Current site
Google Scholar
PubMed
Close
,
Gilbert P. Compo Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Gilbert P. Compo in
Current site
Google Scholar
PubMed
Close
,
Jeffrey S. Whitaker Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Jeffrey S. Whitaker in
Current site
Google Scholar
PubMed
Close
,
Prashant D. Sardeshmukh Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
,
Jih-Wang A. Wang Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Jih-Wang A. Wang in
Current site
Google Scholar
PubMed
Close
,
Kate Friedman NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Kate Friedman in
Current site
Google Scholar
PubMed
Close
, and
Chesley McColl Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Chesley McColl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Given the network of satellite and aircraft observations around the globe, do additional in situ observations impact analyses within a global forecast system? Despite the dense observational network at many levels in the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity 6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available observations, including those taken during the ENRR, are compared with those from an otherwise-identical reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of the assimilating model during a strong El Niño. While the existing observational network partially corrects this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improvements in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that they are valuable within the existing network. The effects of the ENRR observations are pronounced in levels of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRR observations has mixed effects on the mean-square difference with nearby non-ENRR observations. Using a similar system but with a higher-resolution forecast model yields comparable results to the lower-resolution system. These findings imply a limited improvement in large-scale forecast variability from additional in situ observations, but significant improvements in local 6-h forecasts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laura C. Slivinski, laura.slivinski@noaa.gov

Abstract

Given the network of satellite and aircraft observations around the globe, do additional in situ observations impact analyses within a global forecast system? Despite the dense observational network at many levels in the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity 6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available observations, including those taken during the ENRR, are compared with those from an otherwise-identical reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of the assimilating model during a strong El Niño. While the existing observational network partially corrects this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improvements in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that they are valuable within the existing network. The effects of the ENRR observations are pronounced in levels of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRR observations has mixed effects on the mean-square difference with nearby non-ENRR observations. Using a similar system but with a higher-resolution forecast model yields comparable results to the lower-resolution system. These findings imply a limited improvement in large-scale forecast variability from additional in situ observations, but significant improvements in local 6-h forecasts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laura C. Slivinski, laura.slivinski@noaa.gov
Save
  • Anwender, D., C. Cardinali, and S. C. Jones, 2012: Data denial experiments for extratropical transition. Tellus, 64A, 19151, https://doi.org/10.3402/tellusa.v64i0.19151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., B. E. Schwartz, S. E. Koch, and E. J. Szoke, 2004: The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 18711886, https://doi.org/10.1175/BAMS-85-12-1871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., S. Saarinen, G. Kelly, and J.-N. Thépaut, 2003: The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Wea. Rev., 131, 706718, https://doi.org/10.1175/1520-0493(2003)131<0706:TSSOOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., and G. Kelly, 2001: Observing-system experiments in the ECMWF 4D-Var data assimilation system. Quart. J. Roy. Meteor. Soc., 127, 14691488, https://doi.org/10.1002/qj.49712757419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., P. D. Sardeshmukh, and C. Penland, 2001: Changes of subseasonal variability associated with El Niño. J. Climate, 14, 33563374, https://doi.org/10.1175/1520-0442(2001)014<3356:COSVAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. J., D. E. Wolfe, L. M. Hartten, and P. E. Johnston, 2017: El Niño Rapid Response (ENRR) Field Campaign: Radiosonde Data (Level 2) from the NOAA Ship Ronald H. Brown, February–March 2016 (NCEI Accession 0161527). NOAA National Centers for Environmental Information, accessed 1 November 2016, https://doi.org/10.7289/v5x63k15.

    • Crossref
    • Export Citation
  • Dole, R., and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño Rapid Response Field Campaign. Bull. Amer. Meteor. Soc., 99, 9751001, https://doi.org/10.1175/BAMS-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, https://doi.org/10.1111/j.1600-0870.2008.00388.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 40094025, https://doi.org/10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. 2nd ed. Cambridge University Press, 268 pp.

  • Ha, S., C. Snyder, W. C. Skamarock, J. Anderson, and N. Collins, 2017: Ensemble Kalman filter data assimilation for the Model for Prediction Across Scales (MPAS). Mon. Wea. Rev., 145, 46734692, https://doi.org/10.1175/MWR-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., F. Yang, C. Cardinali, and S. J. Majumdar, 2013: Impact of targeted winter storm reconnaissance dropwindsonde data on midlatitude numerical weather predictions. Mon. Wea. Rev., 141, 20582065, https://doi.org/10.1175/MWR-D-12-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., and M. Weissmann, 2010: Sensitivity of typhoon forecasts to different subsets of targeted dropsonde observations. Mon. Wea. Rev., 138, 26642680, https://doi.org/10.1175/2010MWR3309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., P. E. Johnston, C. J. Cox, and D. E. Wolfe, 2017: El Niño Rapid Response (ENRR) Field Campaign: Surface meteorological data from Kiritimati Island, January–March 2016 (NCEI Accession 0161526). NOAA National Centers for Environmental Information, accessed 1 November 2016, https://doi.org/10.7289/v51z42h4.

    • Crossref
    • Export Citation
  • Hartten, L. M., C. J. Cox, P. E. Johnston, D. E. Wolfe, S. Abbott, and H. A. McColl, 2018a: Central-Pacific surface meteorology from the 2016 El Niño Rapid Response (ENRR) field campaign. Earth Syst. Sci. Data, 10, 1139, https://doi.org/10.5194/essd-10-1139-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., C. J. Cox, P. E. Johnston, D. E. Wolfe, S. Abbott, H. A. McColl, X.-W. Quan, and M. G. Winterkorn, 2018b: Ship- and island-based soundings from the 2016 El Niño Rapid Response (ENRR) field campaign. Earth Syst. Sci. Data, 10, 11651183, https://doi.org/10.5194/essd-10-1165-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., C. Zhou, H. Shao, D. Stark, and K. Newman, 2016: Gridpoint Statistical Interpolation (GSI) advanced user’s guide version 3.5. Developmental Testbed Center, 124 pp., https://dtcenter.org/com-GSI/users/docs/users_guide/AdvancedGSIUserGuide_v3.5.0.0.pdf.

  • Huang, X.-Y., and P. Lynch, 1993: Diabatic digital-filtering initialization: Application to the HIRLAM model. Mon. Wea. Rev., 121, 589603, https://doi.org/10.1175/1520-0493(1993)121<0589:DDFIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., N. España, F. Syamsudin, K. J. Richards, T. Jensen, P. Dutrieux, and A. Ishida, 2009: Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current system during the 2006/07 El Niño and 2007/08 La Niña. J. Oceanogr., 65, 325333, https://doi.org/10.1007/s10872-009-0030-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, G., J.-N. Thépaut, R. Buizza, and C. Cardinali, 2007: The value of observations. I: Data denial experiments for the Atlantic and the Pacific. Quart. J. Roy. Meteor. Soc., 133, 18031815, https://doi.org/10.1002/qj.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Issues in targeted observing. Quart. J. Roy. Meteor. Soc., 131, 34093425, https://doi.org/10.1256/qj.05.130.

  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 22872303, https://doi.org/10.1175/BAMS-D-14-00259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., M. J. Brennan, and K. Howard, 2013: The impact of dropwindsonde and supplemental rawinsonde observations on track forecasts for Hurricane Irene (2011). Wea. Forecasting, 28, 13851403, https://doi.org/10.1175/WAF-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, F. J., Jr., 1951: The Kolmogorov–Smirnov test for goodness of fit. J. Amer. Stat. Assoc., 46, 6878, https://doi.org/10.1080/01621459.1951.10500769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2018: NOAA G-IV aircraft. NOAA, accessed 30 March 2018, https://www.esrl.noaa.gov/psd/enso/rapid_response/data_pub/.

  • NOAA/EMC, 2018: Satellite historical documentation. NOAA, accessed 30 March 2018, http://www.emc.ncep.noaa.gov/mmb/data_processing/Satellite_Historical_Documentation.htm.

  • Palmer, T., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., https://www.ecmwf.int/en/elibrary/11577-stochastic-parametrization-and-model-uncertainty.

  • Polavarapu, S., S. Ren, A. M. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132, 24952502, https://doi.org/10.1175/1520-0493(2004)132<2495:OTRBIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, https://doi.org/10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13, 42684286, https://doi.org/10.1175/1520-0442(2000)013<4268:COPAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A., and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113, D18101, https://doi.org/10.1029/2007JD009284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2014: The impact of targeted dropwindsonde observations on tropical cyclone intensity forecasts of four weak systems during PREDICT. Mon. Wea. Rev., 142, 28602878, https://doi.org/10.1175/MWR-D-13-00284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 1994: NSF/NCAR Hercules C130 Aircraft. UCAR/NCAR, accessed 1 November 2016, https://doi.org/10.5065/D6WM1BG0.

    • Crossref
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-W. A., P. D. Sardeshmukh, G. P. Compo, J. S. Whitaker, L. C. Slivinski, C. McColl, and P. Pegion, 2019: Sensitivities of the NCEP Global Forecast System. Mon. Wea. Rev., 147, 12371256, https://doi.org/10.1175/MWR-D-18-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., V. Tallapragada, F. Weng, J. Sippel, and Z. Ma, 2015: Use of incremental analysis updates in 4D-Var data assimilation. Adv. Atmos. Sci., 32, 15751582, https://doi.org/10.1007/s00376-015-5041-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., R. Todling, J. Guo, S. E. Cohn, I. M. Navon, and Y. Yang, 2003: The GEOS-3 retrospective data assimilation system: The 6-hour lag case. Mon. Wea. Rev., 131, 21292150, https://doi.org/10.1175/1520-0493(2003)131<2129:TGRDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 76 2
PDF Downloads 234 55 2