Sensitivity to Physical and Numerical Aspects of Large-Eddy Simulation of Stratocumulus

Georgios Matheou Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Georgios Matheou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4024-4571
and
João Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by João Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A series of numerical experiments where both physical and numerical model parameters are varied with respect to a reference setup is used to investigate the physics of a stratocumulus cloud and the performance of a large-eddy simulation (LES) model. The simulations show a delicate balance of physical processes with some sensitivities amplified by numerical model features. A strong feedback between cloud liquid, cloud-top radiative cooling, and turbulence leads to slow grid convergence of the turbulent fluxes. For a methodology that diagnoses cloud liquid from conserved variables, small errors in the total water amount result in large liquid water errors, which are amplified by the cloud-top radiative cooling leading to large variations of buoyancy forcing. In contrast, when the liquid–radiation–buoyancy feedback is not present in simulations without radiation, the turbulence structure of the boundary layer remains essentially identical for grid resolutions between 20 and 1.25 m. The present runs suggest that the buoyancy reversal instability significantly enhances the entrainment rate. Even though cloud-top radiative cooling is regarded as a key attribute of stratocumulus, the present simulations suggest that surface fluxes and surface shear significantly contribute to the total turbulent kinetic energy. Turbulence spectra exhibit inertial range scaling away from the confinement effects of the surface and inversion. Fine grid resolution LESs agree with observations, especially with respect to cloud liquid and vertical velocity variance, and exhibit grid convergence without any model tuning or ad hoc model choices.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Georgios Matheou, matheou@uconn.edu

Abstract

A series of numerical experiments where both physical and numerical model parameters are varied with respect to a reference setup is used to investigate the physics of a stratocumulus cloud and the performance of a large-eddy simulation (LES) model. The simulations show a delicate balance of physical processes with some sensitivities amplified by numerical model features. A strong feedback between cloud liquid, cloud-top radiative cooling, and turbulence leads to slow grid convergence of the turbulent fluxes. For a methodology that diagnoses cloud liquid from conserved variables, small errors in the total water amount result in large liquid water errors, which are amplified by the cloud-top radiative cooling leading to large variations of buoyancy forcing. In contrast, when the liquid–radiation–buoyancy feedback is not present in simulations without radiation, the turbulence structure of the boundary layer remains essentially identical for grid resolutions between 20 and 1.25 m. The present runs suggest that the buoyancy reversal instability significantly enhances the entrainment rate. Even though cloud-top radiative cooling is regarded as a key attribute of stratocumulus, the present simulations suggest that surface fluxes and surface shear significantly contribute to the total turbulent kinetic energy. Turbulence spectra exhibit inertial range scaling away from the confinement effects of the surface and inversion. Fine grid resolution LESs agree with observations, especially with respect to cloud liquid and vertical velocity variance, and exhibit grid convergence without any model tuning or ad hoc model choices.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Georgios Matheou, matheou@uconn.edu
Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods of Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173–265.

    • Crossref
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, https://doi.org/10.1002/jame.20025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1997: Convection in stratocumulus-topped atmospheric boundary layers. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Springer, 127–142.

    • Crossref
    • Export Citation
  • Bretherton, C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc. London A, 373, 20140415, https://doi.org/10.1098/rsta.2014.0415.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423, https://doi.org/10.1002/qj.49712555402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress over a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • Chung, D., and G. Matheou, 2014: Large-eddy simulation of stratified turbulence. Part I: A vortex-based subgrid-scale model. J. Atmos. Sci., 71, 18631879, https://doi.org/10.1175/JAS-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, D., G. Matheou, and J. Teixeira, 2012: Steady-state large-eddy simulations to study the stratocumulus to shallow-cumulus cloud transition. J. Atmos. Sci., 69, 32643276, https://doi.org/10.1175/JAS-D-11-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuijpers, J. W. M., and P. G. Duynkerke, 1993: Large-eddy simulation of trade-wind cumulus clouds. J. Atmos. Sci., 50, 38943908, https://doi.org/10.1175/1520-0469(1993)050<3894:LESOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lozar, A., and J. P. Mellado, 2015: Mixing driven by radiative and evaporative cooling at the stratocumulus top. J. Atmos. Sci., 72, 46814700, https://doi.org/10.1175/JAS-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlow, F. H., and J. E. Welch, 1965: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, 8, 21822189, https://doi.org/10.1063/1.1761178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, R., D. Mironov, and S. Raasch, 2015: Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study. J. Adv. Model. Earth Syst., 7, 510536, https://doi.org/10.1002/2014MS000376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Coauthors, 1988: Dynamics and chemistry of marine stratocumulus (DYCOMS) experiment. Bull. Amer. Meteor. Soc., 69, 10581067, https://doi.org/10.1175/1520-0477(1988)069<1058:DACOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1979: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng., 19, 5998, https://doi.org/10.1016/0045-7825(79)90034-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, IBM, 195–210.

  • Malinowski, S. P., and Coauthors, 2013: Physics of Stratocumulus Top (POST): Turbulent mixing across capping inversion. Atmos. Chem. Phys., 13, 12 17112 186, https://doi.org/10.5194/acp-13-12171-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., 2016: Numerical discretization and subgrid-scale model effects on large-eddy simulations of a stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 30503062, https://doi.org/10.1002/qj.2888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., 2018: Turbulence structure in a stratocumulus cloud. Atmosphere, 9, 392, https://doi.org/10.3390/atmos9100392.

  • Matheou, G., and D. Chung, 2014: Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 44394460, https://doi.org/10.1175/JAS-D-13-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., and P. E. Dimotakis, 2016: Scalar excursions in large-eddy simulations. J. Comput. Phys., 327, 97120, https://doi.org/10.1016/j.jcp.2016.08.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, and J. Teixeira, 2017: Large-eddy simulation of a stratocumulus cloud. Phys. Rev. Fluids, 2, 090509, https://doi.org/10.1103/PhysRevFluids.2.090509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, https://doi.org/10.1175/2011MWR3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536, https://doi.org/10.1017/S0022112010002831.

  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., C. S. Bretherton, B. Stevens, and M. C. Wyant, 2018: DNS and LES for simulating stratocumulus: Better together. J. Adv. Model. Earth Syst., 10, 14211438, https://doi.org/10.1029/2018MS001312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57, 36273643, https://doi.org/10.1175/1520-0469(2000)057<3627:ERCFAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., S. Shen, and D. A. Randall, 1992: Physical processes within the nocturnal stratus-topped boundary layer. J. Atmos. Sci., 49, 23842401 https://doi.org/10.1175/1520-0469(1992)049<2384:PPWTNS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77, 261278, https://doi.org/10.1175/1520-0477(1996)077<0261:SOASTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morinishi, Y., T. S. Lund, O. V. Vasilyev, and P. Moin, 1998: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys., 143, 90124, https://doi.org/10.1006/jcph.1998.5962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, J. G., S. P. Malinowski, and W. W. Grabowski, 2016: Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer. J. Adv. Model. Earth Syst., 8, 885903, https://doi.org/10.1002/2015MS000572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, J. G., Y.-F. Ma, W. W. Grabowski, and S. P. Malinowski, 2018: Anisotropy of observed and simulated turbulence in marine stratocumulus. J. Adv. Model. Earth Syst., 10, 500515, https://doi.org/10.1002/2017MS001140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plante, I. J.-L., and Coauthors, 2016: Physics of Stratocumulus Top (POST): Turbulence characteristics. Atmos. Chem. Phys., 16, 97119725, https://doi.org/10.5194/acp-16-9711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., S. Mishra, T. Schneider, C. M. Kaul, and Z. Tan, 2017: Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds. J. Adv. Model. Earth Syst., 9, 13421365, https://doi.org/10.1002/2016MS000778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480, https://doi.org/10.1006/jcph.1998.5901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96, 297324, https://doi.org/10.1016/0021-9991(91)90238-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690, https://doi.org/10.1256/qj.01.202.

  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, https://doi.org/10.1146/annurev.earth.33.092203.122658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003a: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, https://doi.org/10.1175/BAMS-84-5-Stevens.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003b: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129, 34693493, https://doi.org/10.1256/qj.02.202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and C. S. Bretherton, 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125, 425439, https://doi.org/10.1002/qj.49712555403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., J. B. Bell, A. S. Almgren, V. E. Beckner, and C. A. Rendleman 2000: Small-scale processes and entrainment in a stratocumulus marine boundary layer. J. Atmos. Sci., 57, 567581, https://doi.org/10.1175/1520-0469(2000)057<0567:SSPAEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. G., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, https://doi.org/10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2016: Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming. Climate Dyn., 46, 30253039, https://doi.org/10.1007/s00382-015-2750-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Dussen, J. J., S. R. De Roode, and A. P. Siebesma, 2014: Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci., 71, 655664, https://doi.org/10.1175/JAS-D-13-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, https://doi.org/10.1175/2007JAS2438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., W. A. Brewer, and G. Feingold, 2013: Evaluation of modeled stratocumulus-capped boundary layer turbulence with shipborne data. J. Atmos. Sci., 70, 38953919, https://doi.org/10.1175/JAS-D-13-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 966 93 9
PDF Downloads 360 77 7