Application of the Synchronized B-Grid Staggering for Solution of the Shallow-Water Equations on the Spherical Icosahedral Grid

Hiroaki Miura Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Hiroaki Miura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A shallow-water model using the hexagonal synchronized B grid (SB grid) is developed on the spherical icosahedral grid. The SB grid adopts the same variable arrangement as the ZM grid, but does not suffer from a computational mode problem of the ZM grid since interactions in the extra degrees of freedom of velocity fields through the nonlinear terms are excluded. For better representations of the geostrophic balance, a quadratic reconstruction of fluid height inside hexagonal/pentagonal cells is used to configure the gradient with the second-order accuracy. When nongeostrophic motions are more dominant than geostrophic ones, smaller-scale noises arise. To prevent a decoupling of the velocity fields, a hyperviscosity is added to force velocities adjacent to each other to evolve synchronously. Some standard tests are performed to examine the SB-grid shallow-water model. The model is almost second-order accurate if both the initial conditions and the surface topography are smooth and if the influence of the hyperviscosity is small. The SB-grid model is superior to a C-grid model regarding the convergence of error norms in a steady-state geostrophically balanced flow test, while it is inferior to that concerning conservation of total energy in a case of flow over an isolated mountain. An advantage of the SB-grid model is that both accuracy and stability are weakly sensitive to whether a grid optimization is applied or not. The SB grid is an attractive alternative to the conventional A grid and is competitive with the C grid on the spherical icosahedral grid.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hiroaki Miura, h_miura@eps.s.u-tokyo.ac.jp

Abstract

A shallow-water model using the hexagonal synchronized B grid (SB grid) is developed on the spherical icosahedral grid. The SB grid adopts the same variable arrangement as the ZM grid, but does not suffer from a computational mode problem of the ZM grid since interactions in the extra degrees of freedom of velocity fields through the nonlinear terms are excluded. For better representations of the geostrophic balance, a quadratic reconstruction of fluid height inside hexagonal/pentagonal cells is used to configure the gradient with the second-order accuracy. When nongeostrophic motions are more dominant than geostrophic ones, smaller-scale noises arise. To prevent a decoupling of the velocity fields, a hyperviscosity is added to force velocities adjacent to each other to evolve synchronously. Some standard tests are performed to examine the SB-grid shallow-water model. The model is almost second-order accurate if both the initial conditions and the surface topography are smooth and if the influence of the hyperviscosity is small. The SB-grid model is superior to a C-grid model regarding the convergence of error norms in a steady-state geostrophically balanced flow test, while it is inferior to that concerning conservation of total energy in a case of flow over an isolated mountain. An advantage of the SB-grid model is that both accuracy and stability are weakly sensitive to whether a grid optimization is applied or not. The SB grid is an attractive alternative to the conventional A grid and is competitive with the C grid on the spherical icosahedral grid.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hiroaki Miura, h_miura@eps.s.u-tokyo.ac.jp
Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. Adv. Res. Appl., 17, 173265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, S., J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, 2002: The synchronization of chaotic systems. Phys. Rep., 366, 1101, https://doi.org/10.1016/S0370-1573(02)00137-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonaventura, L., and T. Ringler, 2005: Analysis of discrete shallow-water models on geodesic Delaunay grids with C-type staggering. Mon. Wea. Rev., 133, 23512373, https://doi.org/10.1175/MWR2986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., J. Bin, F. Xiao, X. Li, and X. Shen, 2014: A global shallow–water model on an icosahedral–hexagonal grid by a multi–moment constrained finite-volume scheme. Quart. J. Roy. Meteor. Soc., 140, 639650, https://doi.org/10.1002/qj.2157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotter, C. J., and J. Shipton, 2012: Mixed finite elements for numerical weather prediction. J. Comput. Phys., 231, 70767091, https://doi.org/10.1016/j.jcp.2012.05.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov, S., D. Sidorenko, Q. Wang, and T. Jung, 2017: The Finite-volumE Sea ice–Ocean Model (FESOM2). Geosci. Model Dev., 10, 765789, https://doi.org/10.5194/gmd-10-765-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Q., M. D. Gunzburger, and L. Ju, 2003: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput., 24, 14881506, https://doi.org/10.1137/S1064827501391576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubos, T., S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, and F. Hourdin, 2015: DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility. Geosci. Model Dev., 8, 31313150, https://doi.org/10.5194/gmd-8-3131-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldred, C., 2015: Linear and nonlinear properties of numerical methods for the rotating shallow water equations. Ph.D. dissertation, Colorado State University, 221 pp.

  • Fujisaka, H., and T. Yamada, 1983: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys., 69, 3247, https://doi.org/10.1143/PTP.69.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., R. K. Scott, and L. M. Polvani, 2004: An initial-value problem for testing numerical models of the global shallow-water equations. Tellus, 56A, 429440, https://doi.org/10.3402/tellusa.v56i5.14436.

    • Search Google Scholar
    • Export Citation
  • Golub, G. H., and C. Reinsch, 1970: Singular value decomposition and least squares solutions. Numer. Math., 14, 403420, https://doi.org/10.1007/BF02163027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, M., and M. Tanemura, 1976: On the pattern of space division by territories. Ann. Inst. Stat. Math., 28, 509519, https://doi.org/10.1007/BF02504768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikes, R., and D. A. Randall, 1995: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 18621880, https://doi.org/10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob-Chien, R., J. J. Hack, and D. L. Williamson, 1995: Spectral transform solutions to the shallow water test set. J. Comput. Phys., 119, 164187, https://doi.org/10.1006/jcph.1995.1125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majewski, D., and Coauthors, 2002: The Operational Global Icosahedral–Hexagonal Gridpoint Model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319338, https://doi.org/10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, Y., and H. Ohnishi, 1986: An integration scheme of the primitive equation model with an icosahedral-hexagonal grid system and its application to the shallow water equations. J. Meteor. Soc. Japan, 64A, 317326, https://doi.org/10.2151/jmsj1965.64A.0_317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, D., 2000: Numerical methods: The Arakawa approach, horizontal grid, global, and limited-area modeling. General Circulation Model Development, D. A. Randall, Ed., Academic Press, 373–419.

    • Crossref
    • Export Citation
  • Miura, H., 2004: Development of a mixed finite-difference/finite-volume scheme for the shallow water model on a spherical geodesic grid. Ph.D. dissertation, University of Tokyo, Tokyo, Japan, 205 pp.

  • Miura, H., 2013: An upwind-biased conservative transport scheme for multistage temporal integrations on spherical icosahedral grids. Mon. Wea. Rev., 141, 40494068, https://doi.org/10.1175/MWR-D-13-00083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., 2017: Coupling the hexagonal B1-grid and B2-grid to avoid a computational mode problem of the hexagonal ZM-grid. SOLA, 13, 6973, https://doi.org/10.2151/sola.2017-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., and M. Kimoto, 2005: A comparison of grid quality of optimized spherical hexagonal–pentagonal geodesic grids. Mon. Wea. Rev., 133, 28172833, https://doi.org/10.1175/MWR2991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., and W. C. Skamarock, 2013: An upwind-biased transport scheme using a quadratic reconstruction on spherical icosahedral grids. Mon. Wea. Rev., 141, 832847, https://doi.org/10.1175/MWR-D-11-00355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, https://doi.org/10.1126/science.1148443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita, 2013: Deep moist atmospheric convection in a subkilometer global simulation. Geophys. Res. Lett., 40, 49224926, https://doi.org/10.1002/grl.50944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ničković, S., M. B. Gavrilov, and I. A. Tošić, 2002: Geostrophic adjustment on hexagonal grids. Mon. Wea. Rev., 130, 668683, https://doi.org/10.1175/1520-0493(2002)130<0668:GAOHG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, P. S., 2016: Accuracy analysis of mimetic finite volume operators on geodesic grids and a consistent alternative. J. Comput. Phys., 310, 127160, https://doi.org/10.1016/j.jcp.2015.12.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1994: Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Wea. Rev., 122, 13711377, https://doi.org/10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., and D. A. Randall, 2002a: A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid. Mon. Wea. Rev., 130, 13971410, https://doi.org/10.1175/1520-0493(2002)130<1397:APEAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., and D. A. Randall, 2002b: The ZM grid: An alternative to the Z grid. Mon. Wea. Rev., 130, 14111422, https://doi.org/10.1175/1520-0493(2002)130<1411:TZGAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, https://doi.org/10.1016/j.jcp.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rípodas, P., and Coauthors, 2009: Icosahedral Shallow Water Model (ICOSWM): Results of shallow water test cases and sensitivity to model parameters. Geosci. Model Dev., 2, 231251, https://doi.org/10.5194/gmd-2-231-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Wea. Rev., 96, 351356, https://doi.org/10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, https://doi.org/10.1016/j.jcp.2007.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipton, J., T. H. Gibson, and C. J. Cotter, 2018: Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere. J. Comput. Phys., 375, 11211137, https://doi.org/10.1016/j.jcp.2018.08.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and A. Gassmann, 2011: Conservative transport schemes for spherical geodesic grids: High-order flux operators for ODE-based time integration. Mon. Wea. Rev., 139, 29622975, https://doi.org/10.1175/MWR-D-10-05056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuhne, G. R., and W. R. Peltier, 1996: Vortex erosion and amalgamation in a new model of large scale flow on the sphere. J. Comput. Phys., 128, 5881, https://doi.org/10.1006/jcph.1996.0196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1995: Dissipation and cascades to small scales in numerical models using a shape-preserving advection scheme. Mon. Wea. Rev., 123, 18881903, https://doi.org/10.1175/1520-0493(1995)123<1888:DACTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1996: Multidimensional flux-limited advection schemes. J. Comput. Phys., 123, 7483, https://doi.org/10.1006/jcph.1996.0006.

  • Thuburn, J., and Y. Li, 2000: Numerical simulations of Rossby–Haurwitz waves. Tellus, 52A, 181189, https://doi.org/10.3402/tellusa.v52i2.12258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and C. J. Cotter, 2015: A primal–dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes. J. Comput. Phys., 290, 274297, https://doi.org/10.1016/j.jcp.2015.02.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., T. D. Ringler, W. C. Skamarock, and J. B. Klemp, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys., 228, 83218335, https://doi.org/10.1016/j.jcp.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., M. Tsugawa, M. Satoh, and K. Goto, 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comput. Phys., 174, 579613, https://doi.org/10.1006/jcph.2001.6897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., M. Satoh, and K. Goto, 2002: An optimization of the icosahedral grid modified by spring dynamics. J. Comput. Phys., 183, 307331, https://doi.org/10.1006/jcph.2002.7193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., C. Jablonowski, and B. van Leer, 2010: High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys., 229, 61046134, https://doi.org/10.1016/j.jcp.2010.04.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and Coauthors, 2017: DCMIP2016: A review of non-hydrostatic dynamical core design and intercomparison of participating models. Geosci. Model Dev., 10, 44774509, https://doi.org/10.5194/gmd-10-4477-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2008a: The Ocean–Land–Atmosphere Model (OLAM). Part I: Shallow-water tests. Mon. Wea. Rev., 136, 40334044, https://doi.org/10.1175/2008MWR2522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2008b: The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and tests of the nonhydrostatic dynamic core. Mon. Wea. Rev., 136, 40454062, https://doi.org/10.1175/2008MWR2523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, H., J. Thuburn, and C. J. Cotter, 2012: Computational modes and grid imprinting on five quasi-uniform spherical C grids. Mon. Wea. Rev., 140, 27342755, https://doi.org/10.1175/MWR-D-11-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 1968: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20, 642653, https://doi.org/10.3402/tellusa.v20i4.10044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 1970: Integration of the primitive barotropic model over a spherical geodesic grid. Mon. Wea. Rev., 98, 512520, https://doi.org/10.1175/1520-0493(1970)098<0512:IOTPBM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224, https://doi.org/10.1016/S0021-9991(05)80016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2015: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 409 84 10
PDF Downloads 388 87 10