Covariance of Optimal Parameters of an Arctic Sea Ice–Ocean Model

Hiroshi Sumata Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Search for other papers by Hiroshi Sumata in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2832-2875
,
Frank Kauker Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, and Ocean Atmosphere Systems, Hamburg, Germany

Search for other papers by Frank Kauker in
Current site
Google Scholar
PubMed
Close
,
Michael Karcher Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, and Ocean Atmosphere Systems, Hamburg, Germany

Search for other papers by Michael Karcher in
Current site
Google Scholar
PubMed
Close
, and
Rüdiger Gerdes Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, and Jacobs University, Bremen, Germany

Search for other papers by Rüdiger Gerdes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uniqueness of optimal parameter sets of an Arctic sea ice simulation is investigated. A set of parameter optimization experiments is performed using an automatic parameter optimization system, which simultaneously optimizes 15 dynamic and thermodynamic process parameters. The system employs a stochastic approach (genetic algorithm) to find the global minimum of a cost function. The cost function is defined by the model–observation misfit and observational uncertainties of three sea ice properties (concentration, thickness, drift) covering the entire Arctic Ocean over more than two decades. A total of 11 independent optimizations are carried out to examine the uniqueness of the minimum of the cost function and the associated optimal parameter sets. All 11 optimizations asymptotically reduce the value of the cost functions toward an apparent global minimum and provide strikingly similar sea ice fields. The corresponding optimal parameters, however, exhibit a large spread, showing the existence of multiple optimal solutions. The result shows that the utilized sea ice observations, even though covering more than two decades, cannot constrain the process parameters toward a unique solution. A correlation analysis shows that the optimal parameters are interrelated and covariant. A principal component analysis reveals that the first three (six) principal components explain 70% (90%) of the total variance of the optimal parameter sets, indicating a contraction of the parameter space. Analysis of the associated ocean fields exhibits a large spread of these fields over the 11 optimized parameter sets, suggesting an importance of ocean properties to achieve a dynamically consistent view of the coupled sea ice–ocean system.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0375.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hiroshi Sumata, hiroshi.sumata@awi.de

Abstract

The uniqueness of optimal parameter sets of an Arctic sea ice simulation is investigated. A set of parameter optimization experiments is performed using an automatic parameter optimization system, which simultaneously optimizes 15 dynamic and thermodynamic process parameters. The system employs a stochastic approach (genetic algorithm) to find the global minimum of a cost function. The cost function is defined by the model–observation misfit and observational uncertainties of three sea ice properties (concentration, thickness, drift) covering the entire Arctic Ocean over more than two decades. A total of 11 independent optimizations are carried out to examine the uniqueness of the minimum of the cost function and the associated optimal parameter sets. All 11 optimizations asymptotically reduce the value of the cost functions toward an apparent global minimum and provide strikingly similar sea ice fields. The corresponding optimal parameters, however, exhibit a large spread, showing the existence of multiple optimal solutions. The result shows that the utilized sea ice observations, even though covering more than two decades, cannot constrain the process parameters toward a unique solution. A correlation analysis shows that the optimal parameters are interrelated and covariant. A principal component analysis reveals that the first three (six) principal components explain 70% (90%) of the total variance of the optimal parameter sets, indicating a contraction of the parameter space. Analysis of the associated ocean fields exhibits a large spread of these fields over the 11 optimized parameter sets, suggesting an importance of ocean properties to achieve a dynamically consistent view of the coupled sea ice–ocean system.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0375.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hiroshi Sumata, hiroshi.sumata@awi.de

Supplementary Materials

    • Supplemental Materials (PDF 1.50 MB)
Save
  • Athias, V., P. Mazzega, and C. Jeandel, 2000: Selecting a global optimization method to estimate the oceanic particle cycling rate constants. J. Mar. Res., 58, 675707, https://doi.org/10.1357/002224000321358855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., H. Sumata, B. Rabe, and U. Schauer, 2018: UDASH—Unified Database for Arctic and Subarctic Hydrography. Earth Syst. Sci. Data, 10, 11191138, https://doi.org/10.5194/essd-10-1119-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blayo, É., M. Bocquet, E. Cosme, and L. F. Cugliandolo, 2015: Advanced Data Assimilation for Geosciences. Oxford University Press, 584 pp.

    • Crossref
    • Export Citation
  • Bouchat, A., and B. Tremblay, 2017: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice. J. Geophys. Res. Oceans, 122, 58025825, https://doi.org/10.1002/2017JC013020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brankart, J.-M., G. Candille, F. Garnier, C. Calone, A. Melet, P.-A. Bouttier, P. Brasseur, and J. Verron, 2015: A generic approach to explicit simulation of uncertainty in the NEMO ocean model. Geosci. Model Dev., 8, 12851297, https://doi.org/10.5194/gmd-8-1285-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro-Morales, K., F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes, 2014: Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations. J. Geophys. Res. Oceans, 119, 559571, https://doi.org/10.1002/2013JC009342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., W. J. Welch, K. P. Bowman, J. Sacks, and J. E. Walsh, 1994: Arctic sea ice variability: Model sensitivities and a multidecadal simulation. J. Geophys. Res., 99, 919935, https://doi.org/10.1029/93JC02564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coello, C. A. C., and G. T. Pulido, 2001: A Micro-Genetic Algorithm for multiobjective Optimization. EMO 2001, E. Zitzler et al., Eds., LNCS 1993, Springer-Verlag, 126–140.

    • Crossref
    • Export Citation
  • Craig, T., and Coauthors, 2018: CICE-Consortium/CICE: CICE version 6.0.0. Zenodo, accessed 13 March 2019, https://doi.org/10.5281/zenodo.1900639.

    • Crossref
    • Export Citation
  • Docquier, D., F. Massonnet, A. Barthélemy, N. F. Tandon, O. Lecomte, and T. Fichefet, 2017: Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6. Cryosphere, 11, 28292846, https://doi.org/10.5194/tc-11-2829-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumont, D., Y. Gratton, and T. E. Arbetter, 2009: Modeling the dynamics of the North Water polynya ice bridge. J. Phys. Oceanogr., 39, 14481461, https://doi.org/10.1175/2008JPO3965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastwood, S., M. Jenssen, T. Lavergne, A. M. Sørensen, and R. Tonboe, 2017: Global sea ice concentration climate data record: Product user manual. Product OSI-450 and OSI-430-b, EUMETSAT Network of Satellite Application Facilities, 33 pp., http://osisaf.met.no/docs/osisaf_cdop3_ss2_pum_sea-ice-conc-climate-data-record_v2p0.pdf.

  • Eisenman, I., N. Untersteiner, and J. S. Wettlaufer, 2007: On the reliability of simulated Arctic sea ice in global climate models. Geophys. Res. Lett., 34, L10501, https://doi.org/10.1029/2007GL029914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. Hibler, 1991: An initial numerical investigation of the extent of sea-ice ridging. Ann. Glaciol., 15, 3136, https://doi.org/10.1017/S0260305500009514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, C., W. Emery, and M. Tschudi, 2013: Polar pathfinder daily 25 km EASE-Grid sea ice motion vectors, version 2 (daily and mean gridded field). NASA DAAC, National Snow and Ice Data Center, Boulder, CO, accessed 23 February 2016, https://doi.org/10.5067/LHAKY495NL2T.

    • Crossref
    • Export Citation
  • Gerdes, R., M. J. Karcher, F. Kauker, and U. Schauer, 2003: Causes and development of repeated Arctic Ocean warming events. Geophys. Res. Lett., 30, 1980, https://doi.org/10.1029/2003GL018080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., S. Tietsche, J. J. Day, E. Hawkins, and T. Jung, 2016: Predictability of the Arctic sea ice edge. Geophys. Res. Lett., 43, 16421650, https://doi.org/10.1002/2015GL067232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, D. E., 1989: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 432 pp.

  • Harder, M., 1996: Dynamik, Rauhigkeit und Alter des Meereises in der Arktis (Dynamics, roughness, and age of Arctic sea ice). Ph.D thesis, Universität Bremen, Bremen, Germany, 129 pp.

  • Harder, M., and H. Fischer, 1999: Sea ice dynamics in the Weddell Sea simulated with an optimized model. J. Geophys. Res., 104, 11 15111 162, https://doi.org/10.1029/1999JC900047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., and K. Bryan, 1987: A diagnostic ice-ocean model. J. Phys. Oceanogr., 17, 9871015, https://doi.org/10.1175/1520-0485(1987)017<0987:ADIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J. H., 1975: Adaption in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, 183 pp.

  • Holland, D. M., L. A. Mysak, D. K. Manak, and J. Oberhuber, 1993: Sensitivity study of a dynamic thermodynamic sea ice model. J. Geophys. Res., 98, 25612586, https://doi.org/10.1029/92JC02015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., 2010: Thickness sensitivities in the CICE sea ice model. Ocean Modell., 34, 137149, https://doi.org/10.1016/j.ocemod.2010.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, and A. K. Turner, 2010: Sea-ice models for climate study: Retrospective and new directions. J. Glaciol., 56, 11621172, https://doi.org/10.3189/002214311796406095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanova, N., and Coauthors, 2015: Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere, 9, 17971817, https://doi.org/10.5194/tc-9-1797-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juricke, S., P. Lemke, R. Timmermann, and T. Rackow, 2013: Effects of stochastic ice strength perturbation on Arctic finite element sea ice modeling. J. Climate, 26, 37853802, https://doi.org/10.1175/JCLI-D-12-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karcher, M., F. Kauker, R. Gerdes, E. Hunke, and J. Zhang, 2007: On the dynamics of Atlantic Water circulation in the Arctic Ocean. J. Geophys. Res., 112, C04S02, https://doi.org/10.1029/2006JC003630.

    • Search Google Scholar
    • Export Citation
  • Karcher, M., J. N. Smith, F. Kauker, R. Gerdes, and W. M. Smethie Jr., 2012: Recent changes in Arctic Ocean circulation revealed by iodine-129 observations and modeling. J. Geophys. Res., 117, C08007, https://doi.org/10.1029/2011JC007513.

    • Search Google Scholar
    • Export Citation
  • Kauker, F., R. Gerdes, M. Karcher, C. Köberle, and J. L. Lieser, 2003: Variability of Arctic and North Atlantic sea ice: A combined analysis of model results and observations from 1978 to 2001. J. Geophys. Res., 108, 3182, https://doi.org/10.1029/2002JC001573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kauker, F., R. Gerdes, M. Karcher, and C. Köberle, 2005: Impact of North Atlantic Current changes on the Nordic Seas and the Arctic Ocean. J. Geophys. Res., 110, C12002, https://doi.org/10.1029/2004JC002624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kauker, F., T. Kaminski, M. Karcher, R. Giering, R. Gerdes, and M. Voßbeck, 2009: Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys. Res. Lett., 36, L03707, https://doi.org/10.1029/2008GL036323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. G., E. C. Hunke, and W. H. Lipscomb, 2006: Sensitivity analysis and parameter tuning scheme for global sea-ice modeling. Ocean Modell., 14, 6180, https://doi.org/10.1016/j.ocemod.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., K. Gotoh, M. Toyosada, and J. Park, 2002: Micro-genetic algorithms (μGAs) for hard combinatorial optimisation problems. ISOPE-I-02-426 2002, Proc. 12th Int. Offshore and Polar Engineering Conf., Kitakyushu, Japan, International Society of Offshore and Polar Engineers, 230–235.

  • Kimura, N., A. Nishimura, Y. Tanaka, and H. Yamaguchi, 2013: Influence of winter sea ice motion on summer ice cover in the Arctic. Polar Res., 32, 20193, https://doi.org/10.3402/polar.v32i0.20193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köberle, C., and R. Gerdes, 2003: Mechanisms determining the variability of Arctic sea ice conditions and export. J. Climate, 16, 28432858, https://doi.org/10.1175/1520-0442(2003)016<2843:MDTVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnakumar, K., 1989: Micro-genetic algorithms for stationary and nonstationary function optimization, Intel. Control Adaptive Syst., 1996, 289296.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Lavergne, T., S. Eastwood, Z. Teffah, H. Schyberg, and L.-A. Breivik, 2010: Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic. J. Geophys. Res., 115, C10032, https://doi.org/10.1029/2009JC005958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, M. Vancoppenolle, P. Mathiot, and C. K. Beatty, 2011: On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere, 5, 687699, https://doi.org/10.5194/tc-5-687-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., H. Goosse, T. Fichefet, and F. Counillon, 2014: Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter. J. Geophys. Res. Oceans, 119, 41684184, https://doi.org/10.1002/2013JC009705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M., 2008: Air–Ice–Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer, 216 pp.

    • Crossref
    • Export Citation
  • Miller, P. A., S. W. Laxon, and D. L. Feltham, 2005: Improving the spatial distribution of modeled Arctic sea ice thickness. Geophys. Res. Lett., 32, L18503, https://doi.org/10.1029/2005GL023622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. A., W. L. Laxon, D. L. Feltham, and D. J. Cresswell, 2006: Optimization of a sea ice model using basinwide observations of Arctic sea ice thickness, extent, and velocity. J. Climate, 19, 10891108, https://doi.org/10.1175/JCLI3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. A., S. W. Laxon, and D. L. Feltham, 2007: Consistent and contrasting decadal Arctic sea ice thickness predictions from a highly optimized sea ice model. J. Geophys. Res., 112, C07020, https://doi.org/10.1029/2006JD007659.

    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, https://doi.org/10.1029/2010JC006573.

    • Search Google Scholar
    • Export Citation
  • Owens, W. B., and P. Lemke, 1990: Sensitivity studies with a sea ice-mixed layer-pycnocline model in the Weddell Sea. J. Geophys. Res., 95, 95279538, https://doi.org/10.1029/JC095iC06p09527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM 2 documentation, user’s guide and reference manual. GFDL Ocean Group Tech. Rep. 3.2, Geophysical Fluid Dynamics Laboratory, Princeton Univ., Princeton, NJ, 350 pp., https://www.gfdl.noaa.gov/wp-content/uploads/2016/10/manual2.2.pdf.

  • Rothrock, D. A., J. Zhang, and Y. Yu, 2003: The arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108, 3083, https://doi.org/10.1029/2001JC001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., D. B. Percival, and M. Wensnahan, 2008: The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113, C05003, https://doi.org/10.1029/2007JC004252.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigation of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., 1991: The open boundary condition in the United Kingdom fine-resolution Antarctic model. J. Phys. Oceanogr., 21, 14941499, https://doi.org/10.1175/1520-0485(1991)021<1494:TOBCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., F. Kauker, R. Gerdes, C. Köberle, and M. Karcher, 2013: A comparison between gradient descent and stochastic approaches for parameter optimization of a sea ice model. Ocean Sci., 9, 609630, https://doi.org/10.5194/os-9-609-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., T. Lavergne, F. Girard-Ardhuin, N. Kimura, M. A. Tschudi, F. Kauker, M. Karcher, and R. Gerdes, 2014: An intercomparison of Arctic ice drift products to deduce uncertainty estimates. J. Geophys. Res. Oceans, 119, 48874921, https://doi.org/10.1002/2013JC009724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., R. Kwok, R. Gerdes, F. Kauker, and M. Karcher, 2015a: Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. J. Geophys. Res. Oceans, 120, 52855301, https://doi.org/10.1002/2015JC010810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., R. Gerdes, F. Kauker, and M. Karcher, 2015b: Empirical error functions for monthly mean Arctic sea-ice drift. J. Geophys. Res. Oceans, 120, 74507475, https://doi.org/10.1002/2015JC011151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., and Coauthors, 2018: Decorrelation scales for Arctic Ocean hydrography—Part I: Amerasian Basin. Ocean Sci., 14, 161185, https://doi.org/10.5194/os-14-161-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., F. Kauker, M. Karcher, and R. Gerdes, 2019: Simultaneous parameter optimization of an Arctic sea ice-ocean model by a genetic algorithm. Mon. Wea. Rev., 147, 18991926, https://doi.org/10.1175/MWR-D-18-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szanyi, S., J. V. Lukovich, D. G. Barber, and G. Haller, 2016: Persistent artifacts in the NSIDC ice motion data set and their implications for analysis. Geophys. Res. Lett., 43, 10 80010 807, https://doi.org/10.1002/2016GL069799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D. N., and G. S. Dieckmann, 2009: Sea Ice. 2nd ed. Wiley-Blackwell, 638 pp.

    • Crossref
    • Export Citation
  • Tsamados, M., D. L. Feltham, and A. V. Wilchinsky, 2013: Impact of a new anisotropic rheology on simulations of Arctic sea ice. J. Geophys. Res. Oceans, 118, 91107, https://doi.org/10.1029/2012JC007990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tschudi, M. A., C. Fowler, J. A. Maslanik, and J. Stroeve, 2010: Tracking the movement and changing surface characteristics of Arctic sea ice. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 536540, https://doi.org/10.1109/JSTARS.2010.2048305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ungermann, M., L. B. Tremblay, T. Martin, and M. Losch, 2017: Impact of the ice strength formulation on the performance of a sea ice thickness distribution model in the Arctic. J. Geophys. Res. Oceans, 122, 20902107, https://doi.org/10.1002/2016JC012128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uotila, P., S. O’Farrell, S. J. Marsland, and D. Bi, 2012: A sea-ice sensitivity study with a global ocean-ice model. Ocean Modell., 51, 118, https://doi.org/10.1016/j.ocemod.2012.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uotila, P., and Coauthors, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dyn., 52, 16131650, https://doi.org/10.1007/s00382-018-4242-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urrego-Blanco, J. R., N. M. Urban, E. C. Hunke, A. K. Turner, and N. Jeffery, 2016: Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model. J. Geophys. Res. Oceans, 121, 27092732, https://doi.org/10.1002/2015JC011558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 2002: Ice in the Ocean. Gordon and Breach, 351 pp.

  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems. Cambridge University Press, 371 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 457 125 15
PDF Downloads 349 86 13