The Relative Impact of Ice Fall Speeds and Microphysics Parameterization Complexity on Supercell Evolution

Nicholas M. Falk Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Search for other papers by Nicholas M. Falk in
Current site
Google Scholar
PubMed
Close
,
Adele L. Igel Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Search for other papers by Adele L. Igel in
Current site
Google Scholar
PubMed
Close
, and
Matthew R. Igel Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Search for other papers by Matthew R. Igel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The use of bin or bulk microphysics schemes in model simulations frequently produces large changes in the simulated storm and precipitation characteristics, but it is still unclear which aspects of these schemes give rise to these changes. In this study, supercell simulations using either a bin or a double-moment bulk microphysics scheme are conducted with the Regional Atmospheric Modeling System (RAMS). The two simulations produce very different storm morphologies. An additional simulation is run for each scheme in which the diameter–fall speed relationships for ice hydrometeors are modified to be similar to those used by the other scheme. When fall speed relationships are homogenized, the two parameterization schemes simulate similar storm morphology. Therefore, despite the use of largely dissimilar approaches to parameterizing microphysics, the difference in storm morphology is found to be related to the choice of diameter–fall speed relationships for ice hydrometeors. This result is investigated further to understand why. Higher fall speeds lead to higher mixing ratios of hydrometeors at low levels and thus more melting. Consequently, stronger downdrafts and cold pools exist in the high fall speed storms, and these stronger cold pools lead to storm splitting and the intensification of a left mover. The results point to the importance of hydrometeor fall speed on the evolution of supercells. It is also suggested that caution be used when comparing the response of a cloud model to different classes of microphysics schemes since the assumptions made by the schemes may be more important than the scheme class itself.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas Falk, nick.falk@colostate.edu

Abstract

The use of bin or bulk microphysics schemes in model simulations frequently produces large changes in the simulated storm and precipitation characteristics, but it is still unclear which aspects of these schemes give rise to these changes. In this study, supercell simulations using either a bin or a double-moment bulk microphysics scheme are conducted with the Regional Atmospheric Modeling System (RAMS). The two simulations produce very different storm morphologies. An additional simulation is run for each scheme in which the diameter–fall speed relationships for ice hydrometeors are modified to be similar to those used by the other scheme. When fall speed relationships are homogenized, the two parameterization schemes simulate similar storm morphology. Therefore, despite the use of largely dissimilar approaches to parameterizing microphysics, the difference in storm morphology is found to be related to the choice of diameter–fall speed relationships for ice hydrometeors. This result is investigated further to understand why. Higher fall speeds lead to higher mixing ratios of hydrometeors at low levels and thus more melting. Consequently, stronger downdrafts and cold pools exist in the high fall speed storms, and these stronger cold pools lead to storm splitting and the intensification of a left mover. The results point to the importance of hydrometeor fall speed on the evolution of supercells. It is also suggested that caution be used when comparing the response of a cloud model to different classes of microphysics schemes since the assumptions made by the schemes may be more important than the scheme class itself.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicholas Falk, nick.falk@colostate.edu
Save
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Sensitivity of bow-echo simulation to microphysical parameterizations. Wea. Forecasting, 28, 11881209. https://doi.org/10.1175/WAF-D-12-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and F. Rawlins, 1981: Paramaterization of the ice-phase in a model of mid-latitude cumulonimbus convection and its influence on the simulation of cloud development. Quart. J. Roy. Meteor. Soc., 107, 477502, https://doi.org/10.1002/qj.49710745302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, K.-Y., P. K. Wang, and T. Hashino, 2015: A numerical study on the attitudes and aerodynamics of freely falling hexagonal ice plates. J. Atmos. Sci., 72, 36853698, https://doi.org/10.1175/JAS-D-15-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, C., and E. W. McCaul, 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134, 25472565, https://doi.org/10.1175/MWR3195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2015: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmos., 120, 34853509, https://doi.org/10.1002/2014JD022142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, https://doi.org/10.1175/MWR2810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, https://doi.org/10.1175/JAS-D-13-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season artic stratus. Ph.D. thesis, Colorado State University, 289 pp.

  • Heymsfield, A., M. Szakáll, A. Jost, I. Giammanco, and R. Wright, 2018: A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci., 75, 38613885, https://doi.org/10.1175/JAS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646673, https://doi.org/10.1175/1520-0469(1974)031<0646:FCTSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., and S. C. van den Heever, 2017: The importance of the shape of cloud droplet size distributions in shallow cumulus clouds. Part I: Bin microphysics simulations. J. Atmos. Sci., 74, 249258, https://doi.org/10.1175/JAS-D-15-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, https://doi.org/10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Nakajima, A. P. Khain, K. Saito, T. Takemura, H. Okamoto, T. Nishizawa, and W.-K. Tao, 2012: Evaluation of cloud microphysics in JMA-NHM simulations using bin or bulk microphysical schemes through comparison with cloud radar observations. J. Atmos. Sci., 69, 25662586, https://doi.org/10.1175/JAS-D-11-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. S., Z. Cui, L. A. Lee, J. P. Gosling, A. M. Blyth, and K. S. Carslaw, 2015: Evaluating uncertainty in convective cloud microphysics using statistical emulation. J. Adv. Model. Earth Syst., 7, 162187, https://doi.org/10.1002/2014MS000383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. B. Pinsky, and M. Shapiro, 2001: Graupel-drop collision efficiencies. J. Atmos. Sci., 58, 25712595, https://doi.org/10.1175/1520-0469(2001)058<2571:CROSGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., L. R. Leung, B. Lynn, and S. Ghan, 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., 114, D22203, https://doi.org/10.1029/2009JD011902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Comparisons. J. Atmos. Sci., 66, 321, https://doi.org/10.1175/2008JAS2646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

  • Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 3557, https://doi.org/10.1016/j.atmosres.2014.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, https://doi.org/10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, https://doi.org/10.1175/JAS3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., 2016: A Bayesian examination of deep convective squall-line sensitivity to changes in cloud microphysical parameters. J. Atmos. Sci., 73, 637665, https://doi.org/10.1175/JAS-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation: With an Introduction to Cloud Chemistry and Cloud Electricity. Springer, 954 pp.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU–RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, https://doi.org/10.1002/qj.1913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., S. Laroche, and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part I: Description. J. Atmos. Sci., 62, 42064221, https://doi.org/10.1175/JAS3620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, https://doi.org/10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, https://doi.org/10.1175/MWR-D-11-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Fan, R. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos., 118, 53615379, https://doi.org/10.1002/jgrd.50432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” Revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., and E. K. Sephton, 2017: Using 3-D-printed analogues to investigate the fall speeds and orientations of complex ice particles. Geophys. Res. Lett., 44, 79948001, https://doi.org/10.1002/2017GL074130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and J. B. Klemp, 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35, 19741986, https://doi.org/10.1175/1520-0469(1978)035<1974:ANSOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 118 9
PDF Downloads 413 100 6