Vertical Resolution Requirements in Atmospheric Simulation

William C. Skamarock National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William C. Skamarock in
Current site
Google Scholar
PubMed
Close
,
Chris Snyder National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
,
Joseph B. Klemp National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Joseph B. Klemp in
Current site
Google Scholar
PubMed
Close
, and
Sang-Hun Park Yonsei University, Seoul, South Korea

Search for other papers by Sang-Hun Park in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of vertical mesh spacing in the convergence of full-physics global atmospheric model solutions is examined for synoptic, mesoscale, and convective-scale horizontal resolutions. Using the MPAS-Atmosphere model, convergence is evaluated for three solution metrics: the horizontal kinetic energy spectrum, the Richardson number probability density function, and resolved flow features. All three metrics exhibit convergence in the free atmosphere for a 15-km horizontal mesh when the vertical grid spacing is less than or equal to 200 m. Nonconvergence is accompanied by noise, spurious structures, reduced levels of mesoscale kinetic energy, and reduced Richardson number peak frequencies. Coarser horizontal mesh solutions converge in a similar manner but contain much less noise than the 15-km solutions for coarse vertical resolution. For convective-scale resolution simulations with 3-km cell spacing on a variable-resolution mesh, solution convergence is almost attained with a vertical mesh spacing of 200 m. The boundary layer scheme is the dominant source of vertical filtering in the free atmosphere. Although the increased vertical mixing at coarser vertical mesh spacing depresses the kinetic energy spectra and Richardson number convergence, it does not produce sufficient dissipation to effectively halt scale collapse. These results confirm and extend the results from a number of previous studies, and further emphasize the sensitivity of the energetics to the vertical mixing formulations in the model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William C. Skamarock, skamaroc@ucar.edu

Abstract

The role of vertical mesh spacing in the convergence of full-physics global atmospheric model solutions is examined for synoptic, mesoscale, and convective-scale horizontal resolutions. Using the MPAS-Atmosphere model, convergence is evaluated for three solution metrics: the horizontal kinetic energy spectrum, the Richardson number probability density function, and resolved flow features. All three metrics exhibit convergence in the free atmosphere for a 15-km horizontal mesh when the vertical grid spacing is less than or equal to 200 m. Nonconvergence is accompanied by noise, spurious structures, reduced levels of mesoscale kinetic energy, and reduced Richardson number peak frequencies. Coarser horizontal mesh solutions converge in a similar manner but contain much less noise than the 15-km solutions for coarse vertical resolution. For convective-scale resolution simulations with 3-km cell spacing on a variable-resolution mesh, solution convergence is almost attained with a vertical mesh spacing of 200 m. The boundary layer scheme is the dominant source of vertical filtering in the free atmosphere. Although the increased vertical mixing at coarser vertical mesh spacing depresses the kinetic energy spectra and Richardson number convergence, it does not produce sufficient dissipation to effectively halt scale collapse. These results confirm and extend the results from a number of previous studies, and further emphasize the sensitivity of the energetics to the vertical mixing formulations in the model.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William C. Skamarock, skamaroc@ucar.edu
Save
  • Billant, P., and J.-M. Chomaz, 2001: Self-similarity of strongly stratified inviscid flows. Phys. Fluids, 13, 16451651, https://doi.org/10.1063/1.1369125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, S., and E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci., 70, 231247, https://doi.org/10.1175/JAS-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., 70, 669687, https://doi.org/10.1175/JAS-D-12-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullen, M. J. P., 2017: The impact of high vertical resolution in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 143, 278287, https://doi.org/10.1002/qj.2920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Ocean–Atmosphere Dynamics. Academic Press, 662 pp.

  • Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquariae Island. J. Atmos. Sci., 57, 737752, https://doi.org/10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. Takahasi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., F. Vial, C. R. Mechoso, C. Basdevant, and P. Cocquerez, 2002: Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near-inertial waves. Geophys. Res. Lett., 29, 1229, https://doi.org/10.1029/2001GL014083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iga, S.-I., H. Tomita, M. Satoh, and K. Goto, 2007: Mountain-wave-like spurious waves associated with simulated cold fronts due to inconsistencies between horizontal and vertical resolutions. Mon. Wea. Rev., 135, 26292641, https://doi.org/10.1175/MWR3423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 2017: Damping characteristics of horizontal Laplacian diffusion filters. Mon. Wea. Rev., 145, 43654379, https://doi.org/10.1175/MWR-D-17-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., and P. A. Clark, 2003: The effects of changing resolution on mesocale modelling of line convection and slantwise circulations in FASTEX IOP16. Quart. J. Roy. Meteor. Soc., 129, 22552278, https://doi.org/10.1256/qj.02.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259288, https://doi.org/10.1017/S0022112099004851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2005: The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett., 32, L01809, https://doi.org/10.1029/2004GL021319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117, 25752583, https://doi.org/10.1175/1520-0493(1989)117<2575:CVAHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., and N. P. Wedi, 2016: How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos., 121, 53955410, https://doi.org/10.1002/2015JD023970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pecnick, N. J., and D. Keyser, 1989: The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive equation model. Meteor. Atmos. Phys., 40, 137149, https://doi.org/10.1007/BF01032454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P., and T. Warner, 1991: Model generation of spurious gravity waves due to inconsistency of the vertical and horizontal resolution. Mon. Wea. Rev., 119, 917935, https://doi.org/10.1175/1520-0493(1991)119<0917:MGOSGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., D. O’Sullivan, and T. Dunkerton, 1997: Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar. Geophys. Res. Lett., 24, 17391742, https://doi.org/10.1029/97GL01759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., T. Kumakura, and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56, 10051018, https://doi.org/10.1175/1520-0469(1999)056<1005:GWAIAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943212, https://doi.org/10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, G., and R. M. Worthington, 2007: Inertia-gravity waves observed by the UK MST radar. Quart. J. Roy. Meteor. Soc., 133, 179188, https://doi.org/10.1002/qj.142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., 2016: Dependence of model energy spectra on vertical resolution. Mon. Wea. Rev., 144, 14071421, https://doi.org/10.1175/MWR-D-15-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517, 281308, https://doi.org/10.1017/S0022112004000977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2006: The transition from geostrophic to stratified turbulence. J. Fluid Mech., 568, 89108, https://doi.org/10.1017/S0022112006002060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, https://doi.org/10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and M. J. Alexander, 2010: Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res., 115, D21122, https://doi.org/10.1029/2010JD013860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., K. Sato, Y. Kawatani, and M. Takahashi, 2015: Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model. Geosci. Model Dev., 8, 16371644, https://doi.org/10.5194/gmd-8-1637-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1445 524 62
PDF Downloads 1541 467 66