• Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthes, L., and C. Mallet, 2013: Vertical evolution of raindrop size distribution: Impact on the shape of the DSD. Atmos. Res., 119, 1322, https://doi.org/10.1016/j.atmosres.2011.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343064, https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110, https://doi.org/10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blahak, U., 2007: RADAR_MIE_LM and RADAR_MIELIB—Calculation of radar reflectivity from model output. Internal Rep., Institute for Meteorology and Climate Research, University of Karlsruhe, Karlsruhe, Germany, 150 pp.

  • Braun, S. A., and R. A. Houze Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51, 27332755, https://doi.org/10.1175/1520-0469(1994)051<2733:TTZASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., R. A. Houze Jr., and M.-J. Yang, 1996: Comments on “The impact of the ice phase and radiation on a midlatitude squall line system.” J. Atmos. Sci., 53, 13431351, https://doi.org/10.1175/1520-0469(1996)053<1343:COIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, https://doi.org/10.1175/2009JTECHA1258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., L. Tolstoy, M. Thurai, and W. A. Petersen, 2015: Estimation of spatial correlation of drop size distribution parameters and rain rate using NASA’s S-band polarimetric radar and 2D video disdrometer network: Two case studies from MC3E. J. Hydrometeor., 16, 12071221, https://doi.org/10.1175/JHM-D-14-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39, 760777, https://doi.org/10.1175/1520-0450(2000)039<0760:DSDCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. Walko, B. Stevens, and W. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48, 505528, https://doi.org/10.1016/S0169-8095(98)00058-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, C., H. Sivaraman, J. Michelsen, R. Goldsmith, R. Bambha, and R. Newsom, 2016: Raman Lidar Mixing Ratio (RLPROFMR2NEWS10M) (12 June 2011). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) Climate Research Facility, Oak Ridge, TN, accessed 27 January 2012, https://doi.org/10.5439/1415137.

    • Crossref
    • Export Citation
  • Giangrande, S. E., E. P. Luke, and P. Kollias, 2012: Characterization of vertical velocity and drop size distribution parameters in widespread precipitation at ARM facilities. J. Appl. Meteor. Climatol., 51, 380391, https://doi.org/10.1175/JAMC-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Hu, Z., and R. Srivastava, 1995: Evolution of raindrop-size distribution by coalescence, breakup and evaporation: Theory and observation. J. Atmos. Sci., 52, 17611783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, https://doi.org/10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018: Microphysical characteristics of squall-line stratiform precipitation and transition zones simulated using an ice particle property-evolving model. Mon. Wea. Rev., 146, 723743, https://doi.org/10.1175/MWR-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Kirstetter, P.-E., J. J. Gourley, Y. Hong, J. Zhang, S. Moazamigoodarzi, C. Langston, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, https://doi.org/10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15, 747762, https://doi.org/10.1175/1520-0450(1976)015<0747:IBCCEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. Albrecht, and F. Marks, 2002: Why Mie? Accurate observations of vertical air velocities and raindrops using a cloud radar. Bull. Amer. Meteor. Soc., 83, 14711483, https://doi.org/10.1175/BAMS-83-10-1471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, https://doi.org/10.1175/JAS-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479, https://doi.org/10.1175/1520-0426(1990)007<0464:AASOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 3557, https://doi.org/10.1016/j.atmosres.2014.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 13931412, https://doi.org/10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. L., J. C. Chiu, R. J. Hogan, and L. Tian, 2017: Improved rain rate and drop size retrievals from airborne Doppler radar. Atmos. Chem. Phys., 17, 11 56711 589, https://doi.org/10.5194/acp-17-11567-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A., B. Isom, D. Nelson, I. Lindenmaier, J. Hardin, K. Johnson, and N. Bharadwaj, 2005: W-Band (95 GHz) ARM Cloud Radar (WACR) (12 June 2011). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) Climate Research Facility, Oak Ridge, TN, accessed 13 June 2013, https://doi.org/10.5439/1025317.

    • Crossref
    • Export Citation
  • Matthews, A., B. Isom, D. Nelson, I. Lindenmaier, J. Hardin, K. Johnson, and N. Bharadwaj, 2011: Ka ARM Zenith Radar (KAZRGE) (12 June 2011). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) Climate Research Facility, Oak Ridge, TN, accessed 27 January 2012, https://doi.org/10.5439/1025214.

    • Crossref
    • Export Citation
  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61, 777794, https://doi.org/10.1175/1520-0469(2004)061<0777:ANROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 39313948, https://doi.org/10.1175/2010JAS3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, https://doi.org/10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muradyan, P., and R. Coulter, 1998: Radar Wind Profiler (915RWPPRECIPMOM) (12 June 2011). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Atmospheric Radiation Measurement (ARM) Climate Research Facility, Oak Ridge, TN, accessed 27 January 2012, https://doi.org/10.5439/1025128.

    • Crossref
    • Export Citation
  • Planche, C., W. Wobrock, and A. I. Flossmann, 2014: The continuous melting process in a cloud-scale model using a bin microphysics scheme. Quart. J. Roy. Meteor. Soc., 140, 19861996, https://doi.org/10.1002/qj.2265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planche, C., F. Tridon, S. Banson, G. Thompson, M. Monier, A. Battaglia, and W. Wobrock, 2019: On the realism of the rain microphysics representation of a squall line in the WRF Model. Part II: Sensitivity studies on the rain drop size distributions. Mon. Wea. Rev., 147, 28112825, https://doi.org/10.1175/MWR-D-18-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., A. Shapiro, and M. Xue, 2012: Impact of a vertical vorticity constraint in variational dual-Doppler wind analysis: Tests with real and simulated supercell data. J. Atmos. Oceanic Technol., 29, 3249, https://doi.org/10.1175/JTECH-D-11-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729–744, https://doi.org/10.1175/JTECH2003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 20892106, https://doi.org/10.1175/2009JTECHA1256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. Climatol., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, L. Li, and R. C. Srivastava, 2007: Properties of light stratiform rain derived from 10- and 94-GHz airborne Doppler radars measurements. J. Geophys. Res., 112, D11211, https://doi.org/10.1029/2006JD008144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., and A. Battaglia, 2015: Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables. J. Geophys. Res. Atmos., 120, 55855601, https://doi.org/10.1002/2014JD023023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., J. Van Baelen, and Y. Pointin, 2011: Aliasing in micro rain radar data due to strong vertical winds. Geophys. Res. Lett., 38, L02804, https://doi.org/10.1029/2010GL046018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, and P. Kollias, 2013a: Distengling Mie and attenuation effects in rain using a Ka–W dual-wavelength Doppler spectral ratio technique. Geophys. Res. Lett., 40, 55485552, https://doi.org/10.1002/2013GL057454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, P. Kollias, E. Luke, and C. R. Williams, 2013b: Signal postprocessing and reflectivity calibration of the atmospheric radiation measurement program 915-MHz wind profilers. J. Atmos. Oceanic Technol., 30, 10381054, https://doi.org/10.1175/JTECH-D-12-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, E. Luke, and P. Kollias, 2017a: Rain retrieval from dual-frequency radar Doppler spectra: Validation and potential for a midlatitude precipitating case-study. Quart. J. Roy. Meteor. Soc., 143, 13641380, https://doi.org/10.1002/qj.3010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, and D. Watters, 2017b: Evaporation in action sensed by multiwavelength Doppler radars. J. Geophys. Res. Atmos., 122, 93799390, https://doi.org/10.1002/2016JD025998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and J. E. M. Goldsmith, 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, https://doi.org/10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, and T. P. Tooman, 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, https://doi.org/10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., J. E. M. Goldsmith, and R. A. Ferrare, 2016: Development and Applications of the ARM Raman Lidar. Meteor. Monogr., No. 57, Amer. Meteor. Soc., 18.1–18.15, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0026.1.

    • Crossref
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, https://doi.org/10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, https://doi.org/10.1175/MWR-D-11-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014a: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014b: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics. J. Geophys. Res. Atmos., 119, 13 91913 945, https://doi.org/10.1002/2013JD021372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58, 1939, https://doi.org/10.1016/S0169-8095(01)00081-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2016: Reflectivity and liquid water content vertical decomposition diagrams to diagnose vertical evolution of raindrop size distributions. J. Atmos. Oceanic Technol., 33, 579595, https://doi.org/10.1175/JTECH-D-15-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, https://doi.org/10.1002/qj.49712555707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. J. Illingworth, and T. M. Blackman, 1997: Differential Doppler velocity: A radar parameter for characterizing hydrometeor size distributions. J. Appl. Meteor., 36, 649663, https://doi.org/10.1175/1520-0450-36.6.649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 6 6 6

On the Realism of the Rain Microphysics Representation of a Squall Line in the WRF Model. Part I: Evaluation with Multifrequency Cloud Radar Doppler Spectra Observations

View More View Less
  • 1 Earth Observation Science, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
  • | 2 Université Clermont Auvergne, INSU-CNRS UMR 6016, Laboratoire de Météorologie Physique, Clermont-Ferrand, France
  • | 3 National Centre for Earth Observation, University of Leicester, Leicester, United Kingdom
  • | 4 Earth Observation Science, Department of Physics and Astronomy, and National Center for Earth Observation, University of Leicester, Leicester, United Kingdom
Restricted access

Abstract

This study investigates how multifrequency cloud radar observations can be used to evaluate the representation of rain microphysics in the WRF Model using two bulk microphysics schemes. A squall line observed over Oklahoma on 12 June 2011 is used as a case study. A recently developed retrieval technique combining observations of two vertically pointing cloud radars provides quantitative description of the drop size distribution (DSD) properties of the transition and stratiform regions of the squall-line system. For the first time, the results of this multifrequency cloud radar retrieval are compared to more conventional retrievals from a nearby polarimetric radar, and a supplementary result of this work is that this new methodology provides a much more detailed description of the DSD vertical and temporal variations. While the extent and evolution of the squall line is well reproduced by the model, the 1-h low-reflectivity transition region is not. In the stratiform region, simulations with both schemes are able to reproduce the observed downdraft and the associated significative subsaturation below the melting level, but with a slight overestimation of the relative humidity. Under this subsaturated air, the simulated rain mixing ratio continuously decreases toward the ground, in agreement with the observations. Conversely, the profiles of the mean volume diameter and the concentration parameter of the DSDs are not well reproduced. These discrepancies pinpoint at an issue in the representation of rain microphysics. The companion paper, investigates the sources of the biases in the microphysics processes in the rain layer by performing numerical sensitivity studies.

Current affiliation: Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0018.s1.

Corresponding author: Frédéric Tridon, ftridon@uni-koeln.de

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0019.1

Abstract

This study investigates how multifrequency cloud radar observations can be used to evaluate the representation of rain microphysics in the WRF Model using two bulk microphysics schemes. A squall line observed over Oklahoma on 12 June 2011 is used as a case study. A recently developed retrieval technique combining observations of two vertically pointing cloud radars provides quantitative description of the drop size distribution (DSD) properties of the transition and stratiform regions of the squall-line system. For the first time, the results of this multifrequency cloud radar retrieval are compared to more conventional retrievals from a nearby polarimetric radar, and a supplementary result of this work is that this new methodology provides a much more detailed description of the DSD vertical and temporal variations. While the extent and evolution of the squall line is well reproduced by the model, the 1-h low-reflectivity transition region is not. In the stratiform region, simulations with both schemes are able to reproduce the observed downdraft and the associated significative subsaturation below the melting level, but with a slight overestimation of the relative humidity. Under this subsaturated air, the simulated rain mixing ratio continuously decreases toward the ground, in agreement with the observations. Conversely, the profiles of the mean volume diameter and the concentration parameter of the DSDs are not well reproduced. These discrepancies pinpoint at an issue in the representation of rain microphysics. The companion paper, investigates the sources of the biases in the microphysics processes in the rain layer by performing numerical sensitivity studies.

Current affiliation: Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0018.s1.

Corresponding author: Frédéric Tridon, ftridon@uni-koeln.de

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0019.1

Supplementary Materials

    • Supplemental Materials (PDF 1.33 MB)
Save