• Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 12411262, https://doi.org/10.1175/MWR-D-12-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J. Appl. Meteor., 16, 13221331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthes, L., and C. Mallet, 2013: Vertical evolution of raindrop size distribution: Impact on the shape of the DSD. Atmos. Res., 119, 1322, https://doi.org/10.1016/j.atmosres.2011.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110, https://doi.org/10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blahak, U., 2007: RADAR_MIE_LM and RADAR_MIELIB—Calculation of radar reflectivity from model output. Internal Rep., Institute for Meteorology and Climate Research, University of Karlsruhe, Karlsruhe, Germany, 150 pp.

  • Brown, B. R., M. M. Bell, and G. Thompson, 2017: Improvements to the snow melting process in a partially double moment microphysics parameterization. J. Adv. Model. Earth Syst., 9, 11501166, https://doi.org/10.1002/2016MS000892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswall, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 9351–9378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 10011033, https://doi.org/10.1175/1520-0469(1995)052<1001:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., and W. Wobrock, 2010: A review of our understanding of the aerosol-cloud interaction from the perspective of a bin resolved cloud scale modelling. Atmos. Res., 97, 478497, https://doi.org/10.1016/j.atmosres.2010.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2017: Derivation of aerosol profiles for MC3E convection studies and use in simulations of the 20 May squall line case. Atmos. Chem. Phys., 17, 59475972, https://doi.org/10.5194/acp-17-5947-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, W., C.-H. Sui, T.-C. C. Wang, and W.-Y. Chang, 2011: An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the Southwest Monsoon Experiment (SoWMEX)/Terrain-influenced Monsoon Rainfall Experiment (TiMREX) observations. J. Geophys. Res., 116, D19101, https://doi.org/10.1029/2011JD015718.

    • Crossref
    • Export Citation
  • Giangrande, S. E., E. P. Luke, and P. Kollias, 2010: Automated retrievals of precipitation parameters using non-Rayleigh scattering at 95 GHz. J. Atmos. Oceanic Technol., 27, 14901503, https://doi.org/10.1175/2010JTECHA1343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. A., B. J. Shipway, and I. A. Boutle, 2015: How sensitive are aerosol-precipitation interactions to the warm rain representation? J. Adv. Model. Earth Syst., 7, 9871004, https://doi.org/10.1002/2014MS000422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, https://doi.org/10.1175/JAM2340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A. J., 1977: Structure and dynamics of a tropical squall line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018: Microphysical characteristics of squall-line stratiform precipitation and transition zones simulated using an ice particle property-evolving model. Mon. Wea. Rev., 146, 723743, https://doi.org/10.1175/MWR-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, https://doi.org/10.1175/2010JAMC2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shallow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 12831298, https://doi.org/10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B., and A. Khain, 2007: Utilization of spectral bin microphysics and bulk parameterization schemes to simulate the cloud structure and precipitation in a mesoscale rain event. J. Geophys. Res., 112, D22205, https://doi.org/10.1029/2007JD008475.

    • Crossref
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, https://doi.org/10.1175/2010JAS3341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 1651966, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2017: Characteristic raindrop size retrievals from measurements of differences in vertical Doppler velocities at Ka- and W-band radar frequencies. J. Atmos. Oceanic Technol., 34, 6571, https://doi.org/10.1175/JTECH-D-16-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matson, R. J., and A. W. Huggins, 1980: The direct measurement of the sizes, shapes, and kinematics of falling hailstones. J. Atmos. Sci., 37, 11071125, https://doi.org/10.1175/1520-0469(1980)037<1107:TDMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 39313948, https://doi.org/10.1175/2010JAS3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, https://doi.org/10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nissan, H., and R. Toumi, 2013: Dynamic simulation of rainfall kinetic energy flux in a cloud resolving model. Geophys. Res. Lett., 40, 3331–3336, https://doi.org/10.1002/grl.50622.

    • Crossref
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planche, C., W. Wobrock, A. I. Flossmann, F. Tridon, J. V. Baelen, Y. Pointin, and M. Hagen, 2010: The influence of aerosol particle number and hygroscopicity on the evolution of convective cloud systems and their precipitation: A numerical study based on the COPS observations on 12 August 2007. Atmos. Res., 98, 4056, https://doi.org/10.1016/j.atmosres.2010.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planche, C., W. Wobrock, and A. I. Flossmann, 2014: The continuous melting process in a cloud-scale model using a bin microphysics scheme. Quart. J. Roy. Meteor. Soc., 140, 19861996, https://doi.org/10.1002/qj.2265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planche, C., J. H. Marsham, P. R. Field, K. S. Carslaw, A. A. Hill, G. W. Mann, and B. J. Shipway, 2015: Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model. Quart. J. Roy. Meteor. Soc., 141, 20322044, https://doi.org/10.1002/qj.2497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Redelsperger, J.-L., and J.-P. Lafore, 1988: A three-dimensional simulation of a tropical squall line: Convective organization and thermodynamic vertical transport. J. Atmos. Sci., 45, 13341356, https://doi.org/10.1175/1520-0469(1988)045<1334:ATDSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1998: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, https://doi.org/10.1002/qj.1913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 392 pp.

    • Crossref
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519554, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., and A. Battaglia, 2015: Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables. J. Geophys. Res. Atmos., 120, 55855601, https://doi.org/10.1002/2014JD023023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, P. Kollias, E. Luke, and C. R. Williams, 2013: Signal postprocessing and reflectivity calibration of the Atmospheric Radiation Measurement program 915-MHz wind profilers. J. Atmos. Oceanic Technol., 30, 10381054, https://doi.org/10.1175/JTECH-D-12-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, E. Luke, and P. Kollias, 2017a: Rain retrieval from dual-frequency radar Doppler spectra: Validation and potential for a midlatitude precipitating case study. Quart. J. Roy. Meteor. Soc., 143, 13631380, https://doi.org/10.1002/qj.3010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, and D. Watters, 2017b: Evaporation in action sensed by multiwavelenth Doppler radars. J. Geophys. Res. Atmos., 122, 9379–9390, https://doi.org/10.1002/2016JD025998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., C. Planche, K. Mroz, S. Banson, A. Battaglia, J. V. Baelen, and W. Wobrock, 2019: On the realism of the rain microphysics representation of a squall line in the WRF Model. Part I: Evaluation with multifrequency cloud radar Doppler spectra observations. Mon. Wea. Rev., 147, 27872810, https://doi.org/10.1175/MWR-D-18-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18841907, https://doi.org/10.1175/MWR-D-11-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics. J. Geophys. Res. Atmos., 119, 13 91913 945, https://doi.org/10.1002/2013JD021372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, H., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 27762793, https://doi.org/10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to the cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 28712880, https://doi.org/10.1175/1520-0469(1990)047<2871:ASTTCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58, 1939, https://doi.org/10.1016/S0169-8095(01)00081-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, J., and Coauthors, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res. Atmos., 122, 80338050, https://doi.org/10.1002/2016JD026346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 4 4 4

On the Realism of the Rain Microphysics Representation of a Squall Line in the WRF Model. Part II: Sensitivity Studies on the Rain Drop Size Distributions

View More View Less
  • 1 Université Clermont Auvergne, INSU-CNRS UMR 6016, Laboratoire de Météorologie Physique, Clermont-Ferrand, France
  • | 2 Earth Observation Science, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
  • | 3 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 4 Earth Observation Science, Department of Physics and Astronomy, and National Center for Earth Observation, University of Leicester, Leicester, United Kingdom
Restricted access

Abstract

A comparison between retrieved properties of the rain drop size distributions (DSDs) from multifrequency cloud radar observations and WRF Model results using either the Morrison or the Thompson bulk microphysics scheme is performed in order to evaluate the model’s ability to predict the rain microphysics. This comparison reveals discrepancies in the vertical profile of the rain DSDs for the stratiform region of the squall-line system observed on 12 June 2011 over Oklahoma. Based on numerical sensitivity analyses, this study addresses the bias at the top of the rain layer and the vertical evolution of the DSD properties (i.e., of Dm and N0*). In this way, the Thompson scheme is used to explore the sensitivity to the melting process. Moreover, using the Thompson and Morrison schemes, the sensitivity of the DSD vertical evolution to different breakup and self-collection parameterizations is studied. Results show that the DSDs are strongly dependent on the representation of the melting process in the Thompson scheme. In the Morrison scheme, the simulations with more efficient breakup reproduce the DSD properties with better fidelity. This study highlights how the inaccuracies in simulated Dm and N0* for both microphysics schemes can impact the evaporation rate, which is systematically underestimated in the model.

Current affiliation: Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0019.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Céline Planche, celine.planche@uca.fr

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0018.1

Abstract

A comparison between retrieved properties of the rain drop size distributions (DSDs) from multifrequency cloud radar observations and WRF Model results using either the Morrison or the Thompson bulk microphysics scheme is performed in order to evaluate the model’s ability to predict the rain microphysics. This comparison reveals discrepancies in the vertical profile of the rain DSDs for the stratiform region of the squall-line system observed on 12 June 2011 over Oklahoma. Based on numerical sensitivity analyses, this study addresses the bias at the top of the rain layer and the vertical evolution of the DSD properties (i.e., of Dm and N0*). In this way, the Thompson scheme is used to explore the sensitivity to the melting process. Moreover, using the Thompson and Morrison schemes, the sensitivity of the DSD vertical evolution to different breakup and self-collection parameterizations is studied. Results show that the DSDs are strongly dependent on the representation of the melting process in the Thompson scheme. In the Morrison scheme, the simulations with more efficient breakup reproduce the DSD properties with better fidelity. This study highlights how the inaccuracies in simulated Dm and N0* for both microphysics schemes can impact the evaporation rate, which is systematically underestimated in the model.

Current affiliation: Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0019.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Céline Planche, celine.planche@uca.fr

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0018.1

Supplementary Materials

    • Supplemental Materials (PDF 2.12 MB)
Save