• Aberson, S. D., 2002: Two years of operational hurricane synoptic surveillance. Wea. Forecasting, 17, 11011110, https://doi.org/10.1175/1520-0434(2002)017<1101:TYOOHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 16131628, https://doi.org/10.1175//2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Amer. Meteor. Soc., 80, 421427, https://doi.org/10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., S. J. Majumdar, C. A. Reynolds, and B. J. Etherton, 2011: An observing system experiment for tropical cyclone targeting techniques using the Global Forecast System. Mon. Wea. Rev., 139, 895907, https://doi.org/10.1175/2010MWR3397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130, https://doi.org/10.2151/jmsj1965.75.1B_111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., L. Bucci, B. Annane, A. Aksoy, S. Murillo, J. Delgado, S. J. Majumdar, and L. Cucurull, 2015a: Observing System Simulation Experiments to assess the potential impact of new observing systems on hurricane forecasting. Mar. Technol. Soc. J., 49, 140148, https://doi.org/10.4031/MTSJ.49.6.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2015b: Observing system simulation experiments (OSSEs) to evaluate the potential impact of an Optical Autocovariance Wind Lidar (OAWL) on numerical weather prediction. J. Atmos. Oceanic Technol., 32, 15931613, https://doi.org/10.1175/JTECH-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and M. Chelliah, 2006: Leading Tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612, https://doi.org/10.1175/JCLI3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, https://doi.org/10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925993, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., and R. Todling, 2010: Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Quart. J. Roy. Meteor. Soc., 136, 20002012, https://doi.org/10.1002/qj.693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531554, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., E. L. Weniger, and D. H. Meanor, 1988: A statistical tropical cyclone intensity forecast technique incorporating environmental wind and vertical wind shear information. Mon. Wea. Rev., 116, 21422154, https://doi.org/10.1175/1520-0493(1988)116<2142:ASTCIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., K. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305, https://doi.org/10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., G. J. Holland, and R. L. Elsberry, 1991: Interactions between a barotropic vortex and an idealized subtropical ridge. Part I: Vortex motion. J. Atmos. Sci., 48, 301314, https://doi.org/10.1175/1520-0469(1991)048<0301:IBABVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks, K. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, https://doi.org/10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, and T. Li, 2013: Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction. Mon. Wea. Rev., 141, 40284048, https://doi.org/10.1175/MWR-D-12-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, https://doi.org/10.1175/BAMS-D-15-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. D. Bell, W. M. Gray, and S. B. Goldenberg, 1998: The extremely active 1995 Atlantic hurricane season: Environmental conditions and verification of seasonal forecasts. Mon. Wea. Rev., 126, 11741193, https://doi.org/10.1175/1520-0493(1998)126<1174:TEAAHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., and M. D. Chou, 2008: Recent Progress in Atmospheric Sciences:Applications to the Asia-Pacific Region. World Scientific, 496 pp.

    • Crossref
    • Export Citation
  • Majumdar, S. J., S. D. Aberson, C. H. Bishop, R. Buizza, M. S. Peng, and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 23542372, https://doi.org/10.1175/MWR3193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., M. J. Brennan, and K. Howard, 2013: The impact of dropwindsonde and supplemental rawindsonde observations on track forecasts for Hurricane Irene (2011). Wea. Forecasting, 28, 13851403, https://doi.org/10.1175/WAF-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., and Coauthors, 2011: Targeting observations for improving numerical weather prediction: An overview. WMO/THORPEX Article 15, WMO, 45 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/THORPEX_No_15.pdf.

  • McNoldy, B., B. Annane, S. Majumdar, J. Delgado, L. Bucci, and R. Atlas, 2017: Impact of assimilating CYGNSS data on tropical cyclone analyses and forecasts in a regional OSSE framework. Mar. Tech. Soc. J., 51, 715, https://doi.org/10.4031/MTSJ.51.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model. J. Adv. Model. Earth Syst., 5, 382405, https://doi.org/10.1002/jame.20031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 25082528, https://doi.org/10.1175/JAS3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., J. Terry, M. Masutani, E. Andersson, L. P. Riishojgaard, and J. C. Jusem, 2007: Preliminary evaluation of the European Centre for Medium-Range Weather Forecasts’ (ECMWF) Nature Run over the tropical Atlantic and African monsoon region. Geophys. Res. Lett., 34, L22810, https://doi.org/10.1029/2007GL031640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., M. S. Peng, S. J. Majumdar, S. D. Aberson, C. H. Bishop, and R. Buizza, 2007: Interpretation of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 135, 40064029, https://doi.org/10.1175/2007MWR2027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riishojgaard, L. P., Z. Ma, M. Masutani, J. S. Woollen, G. D. Emmitt, S. A. Wood, and S. Greco, 2012: Observation system simulation experiments for a global wind observing sounder. Geophys. Res. Lett., 39, L17805, https://doi.org/10.1029/2012GL051814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, K., R. Atlas, L. Bucci, J. Delgado, B. Annane, and S. Murillo, 2016: OSSE assessment of a hyperspectral sounder and its potential impact on hurricane forecasts. 20th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., 245, https://ams.confex.com/ams/96Annual/webprogram/Paper287953.html.

  • Sellwood, K. J., S. J. Majumdar, B. E. Mapes, and I. Szunyogh, 2008: Predicting the influence of observations on medium-range forecasts of atmospheric flow. Quart. J. Roy. Meteor. Soc., 134, 20112027, https://doi.org/10.1002/qj.341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, and Coauthors, 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific Documentation. NCAR Tech. Note NCAR/TN-522+STR, 122 pp., https://doi.org/10.5065/D6ZP44B5.

    • Crossref
    • Export Citation
  • Torn, R. D., 2014: The impact of targeted dropwindsonde observations on tropical cyclone intensity forecasts of four weak systems during PREDICT. Mon. Wea. Rev., 142, 28602878, https://doi.org/10.1175/MWR-D-13-00284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, https://doi.org/10.1175/2009MWR2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.C., and Coauthors, 2009: Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific. Mon. Wea. Rev., 137, 24712492, https://doi.org/10.1175/2009MWR2762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., F. Zhang, Q. Zhang, J. Poterjoy, and Y. Weng, 2013: Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation. Mon. Wea. Rev., 141, 14371453, https://doi.org/10.1175/MWR-D-12-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, https://doi.org/10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., F. Zhang, X. Huang, and X. Zhang, 2011: Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev., 139, 566572, https://doi.org/10.1175/2010MWR3610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., F. Weng, M. Masutani, and J. S. Woollen, 2012: Synthetic radiance simulation and evaluation for a Joint Observing System Simulation Experiment. J. Geophys. Res., 117, D23111, https://doi.org/10.1029/2012JD017697.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Impact of Gulfstream-IV Dropsondes on Tropical Cyclone Prediction in a Regional OSSE System

View More View Less
  • 1 NOAA/AOML/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 2 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • | 3 NOAA/AOML/Hurricane Research Division, Miami, Florida
Restricted access

Abstract

Aircraft reconnaissance missions remain the primary means of collecting direct measurements of marine atmospheric conditions affecting tropical cyclone formation and evolution. The National Hurricane Center tasks the NOAA G-IV aircraft to sample environmental conditions that may impact the development of a tropical cyclone threatening to make landfall in the United States or its territories. These aircraft data are assimilated into deterministic models and used to produce real-time analyses and forecasts for a given tropical cyclone. Existing targeting techniques aim to optimize the use of reconnaissance observations and partially rely on regions of highest uncertainty in the Global Ensemble Forecast System. Evaluating the potential impact of various trade-offs in the targeting process is valuable for determining the ideal aircraft flight track for a prospective mission. AOML’s Hurricane Research Division has developed a system for performing regional observing system simulation experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasting. This study focuses on improving existing targeting methods by investigating the impact of proposed aircraft observing system designs through various sensitivity studies. G-IV dropsonde retrievals were simulated from a regional nature run, covering the life cycle of a rapidly intensifying Atlantic hurricane. Results from sensitivity studies provide insight into improvements for real-time operational synoptic surveillance targeting for hurricanes and tropical storms, where dropsondes released closer to the vortex–environment interface provide the largest impact on the track forecast. All dropsonde configurations provide a positive 2-day impact on intensity forecasts by improving the environmental conditions known to impact tropical cyclone intensity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Ryan, kelly.ryan@noaa.gov

Abstract

Aircraft reconnaissance missions remain the primary means of collecting direct measurements of marine atmospheric conditions affecting tropical cyclone formation and evolution. The National Hurricane Center tasks the NOAA G-IV aircraft to sample environmental conditions that may impact the development of a tropical cyclone threatening to make landfall in the United States or its territories. These aircraft data are assimilated into deterministic models and used to produce real-time analyses and forecasts for a given tropical cyclone. Existing targeting techniques aim to optimize the use of reconnaissance observations and partially rely on regions of highest uncertainty in the Global Ensemble Forecast System. Evaluating the potential impact of various trade-offs in the targeting process is valuable for determining the ideal aircraft flight track for a prospective mission. AOML’s Hurricane Research Division has developed a system for performing regional observing system simulation experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasting. This study focuses on improving existing targeting methods by investigating the impact of proposed aircraft observing system designs through various sensitivity studies. G-IV dropsonde retrievals were simulated from a regional nature run, covering the life cycle of a rapidly intensifying Atlantic hurricane. Results from sensitivity studies provide insight into improvements for real-time operational synoptic surveillance targeting for hurricanes and tropical storms, where dropsondes released closer to the vortex–environment interface provide the largest impact on the track forecast. All dropsonde configurations provide a positive 2-day impact on intensity forecasts by improving the environmental conditions known to impact tropical cyclone intensity.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Ryan, kelly.ryan@noaa.gov
Save