• Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Amer. Meteor. Soc., 80, 421427, https://doi.org/10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., S. D. Aberson, T. Vukicevic, K. J. Sellwood, S. Lorsolo, and X. J. Zhang, 2013: Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 vortex-scale analyses. Mon. Wea. Rev., 141, 18421865, https://doi.org/10.1175/MWR-D-12-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, J. C., and V. K. Kumar, 2007: Radial wind super-obs from the WSR-88D radars in the NCEP operational assimilation system. Mon. Wea. Rev., 135, 10901108, https://doi.org/10.1175/MWR3324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1974: The dynamics and energetics of mature tropical cyclones. Rev. Geophys., 12, 495522, https://doi.org/10.1029/RG012i003p00495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and Coauthors, 2016: ONR tropical cyclone intensity 2015 NASA WB-57 HDSS dropsonde data, version 1.0. UCAR/NCAR–Earth Observatory Laboratory, accessed 1 May 2016, https://doi.org/10.5065/D6KW5D8M.

    • Crossref
    • Export Citation
  • Biswas, M. K., L. Carson, K. Newman, L. Bernardet, E. Kalina, E. Grell, and J. Frimel, 2017: Community HWRF Users’s Guide v3.9a. NOAA Tech. Memo. OAR GSD-51, Developmental Testbed Center, 163 pp., https://dtcenter.org/HurrWRF/users/docs/users_guide/noaa_16281_DS1.pdf.

  • Black, P. G., L. Harrison, M. Beaubien, R. Bluth, H. Jonsson, A. B. Penny, R. W. Smith, and J. D. Doyle, 2017: High Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777796, https://doi.org/10.1175/JTECH-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D. L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordoba, M., S. L. Dance, G. A. Kelly, N. K. Nichols, and J. A. Waller, 2017: Diagnosing atmospheric motion vector observation errors for an operational high-resolution data assimilation system. Quart. J. Roy. Meteor. Soc., 143, 333341, https://doi.org/10.1002/qj.2925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 2005: An efficient mixed-phase cloud and precipitation scheme for use in operational NWP models. 2005 Spring Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A42A-02.

  • Franklin, J. L., S. J. Lord, and F. D. Marks Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116, 12371244, https://doi.org/10.1175/1520-0493(1988)116<1237:DAROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., J. Kaplan, C. S. Velden, and C. M. Hayden, 1990: Some comparisons of VAS and dropwindsonde data over the subtropical Atlantic. Mon. Wea. Rev., 118, 18691887, https://doi.org/10.1175/1520-0493(1990)118<1869:SCOVAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high-altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, https://doi.org/10.1175/JAS3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2006: Sensitivity of hurricane intensity forecasts to convective momentum transport parameterization. Mon. Wea. Rev., 134, 664674, https://doi.org/10.1175/MWR3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and J. M. Fritsch, 1993: On understanding height tendency. Mon. Wea. Rev., 121, 26462661, https://doi.org/10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwind-sonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structure changes. Quart. J. Roy. Meteor. Soc., 110, 723745, https://doi.org/10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., G. Ge, C. Zhou, D. Stark, H. Shao, K. Newman, J. Beck, and X. Zhang, 2018: GSI user’s guide version 3.7. Developmental Testbed Center, 147 pp., https://dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf.

  • Intrieri, J., and Coauthors, 2014: Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. Atmos. Meas. Tech., 7, 39173926, https://doi.org/10.5194/amt-7-3917-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1961: Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. J. Meteor., 18, 779789, https://doi.org/10.1175/1520-0469(1961)018<0779:MCITCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., E. S. Blake, and J. P. Cangialosi, 2015: National Hurricane Center Tropical Cyclone Report: Hurricane Patricia (20–24 October 2015). National Hurricane Center Tropical Cyclone Rep. EP202015, 32 pp., https://www.nhc.noaa.gov/data/tcr/EP202015_Patricia.pdf.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2017: Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Wea. Rev., 145, 13391359, https://doi.org/10.1175/MWR-D-16-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., S. Lord, B. Lapenta, V. Tallapragada, Q. Liu, and Z. Zhang, 2010: Sensitivity of air-sea exchange coefficients (Cd and Ch) on hurricane intensity. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 13C.1, https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167760.htm.

  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, A. H. N., J. A. Jung, S. E. Nebuda, J. M. Daniels, W. Bresky, M. Tong, and V. Tallapragada,, 2019: Tropical cyclone forecasts impact assessment from the assimilation of hourly visible, shortwave, and clear-air water vapor atmospheric motion vectors in HWRF. Wea. Forecasting, 34, 177198, https://doi.org/10.1175/WAF-D-18-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., and X. Wang, 2019a: Improving hurricane analyses and predictions with TCI, IFEX field campaign observations, and CIMSS AMVs using the advanced hybrid data assimilation system for HWRF. Part I: What is missing to capture the rapid intensification of Hurricane Patricia (2015) when HWRF is already initialized with more realistic analysis? Mon. Wea. Rev., 147, 13511373, https://doi.org/10.1175/MWR-D-18-0202.1.

    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017a: GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Quart. J. Roy. Meteor. Soc., 143, 223239, https://doi.org/10.1002/qj.2914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, Y. Li, M. Tong, and V. Tallapragada, 2017b: GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., M. Brennan, and K. Howard, 2013: The impact of dropwindsonde and supplemental rawinsonde observations on track forecasts for Hurricane Irene. Wea. Forecasting, 28, 13851403, https://doi.org/10.1175/WAF-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988a: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, https://doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988b: Characteristics of upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 16651677, https://doi.org/10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poteat, K. O., 1973: A comparison of satellite-derived, low-level and cirrus-level winds with conventional wind observations. J. Appl. Meteor., 12, 14161419, https://doi.org/10.1175/1520-0450(1973)012<1417:ACOSDL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E., M. C. Morgan, and G. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, https://doi.org/10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Aberson, M. M. Bell, D. J. Cecil, J. D. Doyle, J. Morgerman, L. K. Shay, and C. Velden, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts with high-resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, https://doi.org/10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and S. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 90759096, https://doi.org/10.1029/89JD01598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sears, J., and C. S. Velden, 2012: Validation of satellite-derived atmospheric motion vectors and analyses around tropical disturbances. J. Appl. Meteor. Climatol., 51, 18231834, https://doi.org/10.1175/JAMC-D-12-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 33053328, https://doi.org/10.1175/JAS-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2016: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 scientific documentation. NCAR Tech. Note NCAR/TN-522+STR, 122 pp., https://doi.org/10.5065/D6ZP44B5.

    • Crossref
    • Export Citation
  • Velden, C., and K. Bedka, 2009: Identifying the uncertainty in determining satellite-derived atmospheric motion vector height attribution. J. Appl. Meteor. Climatol., 48, 450463, https://doi.org/10.1175/2008JAMC1957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. P., X. P. Cui, X. F. Li, W. L. Zhang, and Y. J. Huang, 2016: Kinetic energy budget during the genesis period of Tropical Cyclone Durian (2001) in the South China Sea. Mon. Wea. Rev., 144, 28312854, https://doi.org/10.1175/MWR-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T.-C., C. S. Velden, S. J. Majumdar, H. Liu, and J. L. Andersson, 2015: Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter. Mon. Wea. Rev., 143, 25062531, https://doi.org/10.1175/MWR-D-14-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B. L., R. S. Lindzen, V. Tallapragada, F. Weng, Q. Liu, J. A. Sippel, Z. Ma, and M. A. Bender, 2016: Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example. Proc. Natl. Acad. Sci. USA, 113, 11 76511 769, https://doi.org/10.1073/pnas.1613800113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, https://doi.org/10.1029/2011GL048469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, J. A. Sippel, R. F. Rogers, X. Zhang, S. G. Gopalakrishnan, Z. Zhang, and V. Tallapragada, 2018: Evaluating the impact of improvement in the horizontal diffusion parameterization on hurricane prediction in the operational Hurricane Weather Research and Forecasting (HWRF) Model. Wea. Forecasting, 33, 317329, https://doi.org/10.1175/WAF-D-17-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Tyner, J. A. Zhang, E. Aligo, S. Gopalakrishnan, F. D. Marks, A. Mehra, and V. Tallapragada, 2018: Role of eyewall and rainband eddy forcing in tropical cyclone intensification. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-610, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 118
PDF Downloads 8 8 8

Impact of Assimilating Upper-Level Dropsonde Observations Collected during the TCI Field Campaign on the Prediction of Intensity and Structure of Hurricane Patricia (2015)

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

The dropsondes released during the Tropical Cyclone Intensity (TCI) field campaign provide high-resolution kinematic and thermodynamic measurements of tropical cyclones within the upper-level outflow and inner core. This study investigates the impact of these upper-level TCI dropsondes on analyses and prediction of Hurricane Patricia (2015) during its rapid intensification (RI) phase using an ensemble–variational data assimilation system. In the baseline experiment (BASE), both kinematic and thermodynamic observations of TCI dropsondes at all levels except the upper levels are assimilated. The upper-level wind and thermodynamic observations are assimilated in additional experiments to investigate their respective impacts. Compared to BASE, assimilating TCI upper-level wind observations improves the accuracy of outflow analyses verified against independent atmospheric motion vector (AMV) observations. It also strengthens the tangential and radial wind near the upper-level eyewall. The inertial stability within the upper-level eyewall is enhanced, and the maximum outflow is more aligned toward the inner core. Additionally, the analyses including the upper-level thermodynamic observations produce a warmer and drier core at high levels. Assimilating both upper-level kinematic and thermodynamic observations also improves the RI forecast. Compared to BASE, assimilating the upper-level wind induces more upright and inward-located eyewall convection, resulting in more latent heat release closer to the warm core. This process leads to stronger inner-core warming. Additionally, the initial warmer upper-level inner core produced by assimilating TCI thermodynamic observations also intensifies the convection and latent heat release within the eyewall, thus further contributing to the improved intensity forecasts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

The dropsondes released during the Tropical Cyclone Intensity (TCI) field campaign provide high-resolution kinematic and thermodynamic measurements of tropical cyclones within the upper-level outflow and inner core. This study investigates the impact of these upper-level TCI dropsondes on analyses and prediction of Hurricane Patricia (2015) during its rapid intensification (RI) phase using an ensemble–variational data assimilation system. In the baseline experiment (BASE), both kinematic and thermodynamic observations of TCI dropsondes at all levels except the upper levels are assimilated. The upper-level wind and thermodynamic observations are assimilated in additional experiments to investigate their respective impacts. Compared to BASE, assimilating TCI upper-level wind observations improves the accuracy of outflow analyses verified against independent atmospheric motion vector (AMV) observations. It also strengthens the tangential and radial wind near the upper-level eyewall. The inertial stability within the upper-level eyewall is enhanced, and the maximum outflow is more aligned toward the inner core. Additionally, the analyses including the upper-level thermodynamic observations produce a warmer and drier core at high levels. Assimilating both upper-level kinematic and thermodynamic observations also improves the RI forecast. Compared to BASE, assimilating the upper-level wind induces more upright and inward-located eyewall convection, resulting in more latent heat release closer to the warm core. This process leads to stronger inner-core warming. Additionally, the initial warmer upper-level inner core produced by assimilating TCI thermodynamic observations also intensifies the convection and latent heat release within the eyewall, thus further contributing to the improved intensity forecasts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save