• Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. Holton, and C. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Bannon, P. R., J. Schmidli, and C. Schär, 2003: On potential vorticity flux vectors. J. Atmos. Sci., 60, 29172921, https://doi.org/10.1175/1520-0469(2003)060<2917:OPVFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships of eddy fluxes of energy, heat, and momentum. J. Atmos. Sci., 33, 22852291, https://doi.org/10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941, https://doi.org/10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2003: Comments on “A generalization of Bernoulli’s Theorem.” J. Atmos. Sci., 60, 20392041, https://doi.org/10.1175/1520-0469(2003)060<2039:COAGOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., K.-P. Hoinka, and T. Spengler, 2015: Aspects of potential vorticity fluxes: Climatology and impermeability. J. Atmos. Sci., 72, 32573267, https://doi.org/10.1175/JAS-D-14-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2013: A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Quart. J. Roy. Meteor. Soc., 139, 152175, https://doi.org/10.1002/qj.1960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2014: Deviations form a general nonlinear wind balance: Local and zonal-mean perspectives. Meteor. Z., 23, 467481, https://doi.org/10.1127/metz/2014/0568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2018: Discretization of generalized Coriolis and friction terms on the deformed hexagonal C-grid. Quart. J. Roy. Meteor. Soc., 144, 20382053, https://doi.org/10.1002/qj.3294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, 20212031, https://doi.org/10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. Pedder, and D. W. Jones, 2003: The omega equation and potential vorticity. Quart. J. Roy. Meteor. Soc., 129, 32773303, https://doi.org/10.1256/qj.02.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432975, https://doi.org/10.1256/qj.06.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., H.-Y. Chun, S.-H. Park, I.-S. Song, and H.-J. Choi, 2016: Characteristics of gravity waves generated in the jet-front system in a baroclinic instability simulation. Atmos. Chem. Phys., 16, 47994815, https://doi.org/10.5194/acp-16-4799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lange, H.-J., 2002: Die Physik des Wetters und des Klimas (The Physics of Weather and Climate). Dietrich Reimer Verlag Berlin, 625 pp.

  • Mirzaei, M., A. R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2017: On the quantification of imbalance and inertia-gravity waves generated in numerical simulations of moist baroclinic waves using the WRF model. J. Atmos. Sci., 74, 42414263, https://doi.org/10.1175/JAS-D-16-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, A., P. Névir, and R. Klein, 2018: Scale dependent analytical investigation of the dynamic state index concerning the quasi-geostrophic theory. Math. Climate Wea. Forecasting, 4, 122, https://doi.org/10.1515/mcwf-2018-0001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Névir, P., 2004: Ertel’s vorticity theorems, the particle relabelling symmetry and the energy-vorticity theory of fluid mechanics. Meteor. Z., 13, 485498, https://doi.org/10.1127/0941-2948/2004/0013-0485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, https://doi.org/10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2015: Analysis of the slope of isentropic surfaces and its tendencies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 141, 32263238, https://doi.org/10.1002/qj.2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1963: Geostrophic motion. Rev. Geophys., 1, 123176, https://doi.org/10.1029/RG001i002p00123.

  • Plougonven, R., and C. Snyder, 2007: Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689, https://doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., 1993: A generalization of Bernoulli’s theorem. J. Atmos. Sci., 50, 14371443, https://doi.org/10.1175/1520-0469(1993)050<1437:AGOBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., 2003: Reply. J. Atmos. Sci., 60, 20422043, https://doi.org/10.1175/1520-0469(2003)060<2042:R>2.0.CO;2.

  • Slater, T. P., D. M. Schultz, and G. Vaughan, 2015: Acceleration of near-surface strong winds in a dry, idealised extratropical cyclone. Quart. J. Roy. Meteor. Soc., 141, 10041016, https://doi.org/10.1002/qj.2417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, T. P., D. M. Schultz, and G. Vaughan, 2017: Near-surface strong winds in a marine extratropical cyclone: acceleration of the winds and the importance of surface fluxes. Quart. J. Roy. Meteor. Soc., 143, 321332, https://doi.org/10.1002/qj.2924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, T., and P. Névir, 2008: Storm tracks and cyclone development using the theoretical concept of the Dynamic State Index (DSI). Tellus, 60A, 110, https://doi.org/10.1111/j.1600-0870.2007.00272.x.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2015: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 8 8 8

Analysis of Large-Scale Dynamics and Gravity Waves under Shedding of Inactive Flow Components

View More View Less
  • 1 Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
Restricted access

Abstract

The Ertel’s potential vorticity (EPV) budget equation does not see the contribution of an inactive EPV flux component ∇θ × ∇B because it drops out when taking the divergence. A part of the actual EPV flux can always be interpreted as such an inactive component and is thus likewise shed from the EPV budget equation. The deviation from this inactive EPV flux is called the active EPV flux and the associated wind is called the active wind. The horizontal active wind is comparable to the ageostrophic wind. The vertical active wind component is similar to the isentropic displacement vertical wind. In contrast to the actual wind, the vertical active wind does not vanish at the surface, because the inactive wind blows along isentropes, which may intersect the ground. Transformed governing equations are derived as functions of the active wind components. The terms on the right of the transformed equations can be scrutinized with respect to their effects on the evolution of the atmospheric state. An idealized baroclinic wave in a dry atmosphere is discussed with focus on the fronts and the generation or depletion of kinetic energy. Since the vertical inactive wind does not necessarily vanish at the surface, the arising vertical active wind is responsible for the cooling (raising of isentropes) and the warming (sinking of isentropes) in the different regions of a cyclone. The new method allows for a unique separation of gravity waves and vortical modes. This facilitates the analysis of gravity wave generation and propagation from jets and fronts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Almut Gassmann, gassmann@iap-kborn.de

Abstract

The Ertel’s potential vorticity (EPV) budget equation does not see the contribution of an inactive EPV flux component ∇θ × ∇B because it drops out when taking the divergence. A part of the actual EPV flux can always be interpreted as such an inactive component and is thus likewise shed from the EPV budget equation. The deviation from this inactive EPV flux is called the active EPV flux and the associated wind is called the active wind. The horizontal active wind is comparable to the ageostrophic wind. The vertical active wind component is similar to the isentropic displacement vertical wind. In contrast to the actual wind, the vertical active wind does not vanish at the surface, because the inactive wind blows along isentropes, which may intersect the ground. Transformed governing equations are derived as functions of the active wind components. The terms on the right of the transformed equations can be scrutinized with respect to their effects on the evolution of the atmospheric state. An idealized baroclinic wave in a dry atmosphere is discussed with focus on the fronts and the generation or depletion of kinetic energy. Since the vertical inactive wind does not necessarily vanish at the surface, the arising vertical active wind is responsible for the cooling (raising of isentropes) and the warming (sinking of isentropes) in the different regions of a cyclone. The new method allows for a unique separation of gravity waves and vortical modes. This facilitates the analysis of gravity wave generation and propagation from jets and fronts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Almut Gassmann, gassmann@iap-kborn.de
Save