Microphysical Process Comparison of Three Microphysics Parameterization Schemes in the WRF Model for an Idealized Squall-Line Case Study

J.-W. Bao NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by J.-W. Bao in
Current site
Google Scholar
PubMed
Close
,
S. A. Michelson NOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by S. A. Michelson in
Current site
Google Scholar
PubMed
Close
, and
E. D. Grell NOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Search for other papers by E. D. Grell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three bulk microphysics schemes with different complexities in the Weather Research and Forecasting Model are compared in terms of the individual microphysical process terms of the hydrometeor mass and number mixing ratio tendency equations in an idealized 2D squall-line case. Through evaluation of these process terms and of hydrometeor size distributions, it is shown that the differences in the simulated population characteristics of snow, graupel, and rainwater are the prominent factors contributing to the differences in the development of the simulated squall lines using these schemes. In this particular case, the gust front propagation speed produced by the Thompson scheme is faster than in the other two schemes during the first 2 h of the simulation because it has a larger dominant graupel size. After 2 h into the simulation, the initially less intense squall lines in the runs using the WSM6 and Morrison schemes start to catch up in intensity and development to the run using the Thompson scheme. Because the dominant size of graupel particles in the runs using the WSM6 and Morrison schemes is smaller, these particles take more time to fall below the freezing level and enhance the rainwater production and its evaporative cooling. In the run using the Thompson scheme, the graupel production slows down at later times while the snow particle growth increases, leading to more snow falling below the freezing level to melt and surpass graupel particle melting in the production of rainwater.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian-Wen Bao, jian-wen.bao@noaa.gov

Abstract

Three bulk microphysics schemes with different complexities in the Weather Research and Forecasting Model are compared in terms of the individual microphysical process terms of the hydrometeor mass and number mixing ratio tendency equations in an idealized 2D squall-line case. Through evaluation of these process terms and of hydrometeor size distributions, it is shown that the differences in the simulated population characteristics of snow, graupel, and rainwater are the prominent factors contributing to the differences in the development of the simulated squall lines using these schemes. In this particular case, the gust front propagation speed produced by the Thompson scheme is faster than in the other two schemes during the first 2 h of the simulation because it has a larger dominant graupel size. After 2 h into the simulation, the initially less intense squall lines in the runs using the WSM6 and Morrison schemes start to catch up in intensity and development to the run using the Thompson scheme. Because the dominant size of graupel particles in the runs using the WSM6 and Morrison schemes is smaller, these particles take more time to fall below the freezing level and enhance the rainwater production and its evaporative cooling. In the run using the Thompson scheme, the graupel production slows down at later times while the snow particle growth increases, leading to more snow falling below the freezing level to melt and surpass graupel particle melting in the production of rainwater.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian-Wen Bao, jian-wen.bao@noaa.gov
Save
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013a: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 12411262, https://doi.org/10.1175/MWR-D-12-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013b: Sensitivity of bow-echo simulation to microphysical parameterizations. Wea. Forecasting, 28, 11881209, https://doi.org/10.1175/WAF-D-12-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. A. Michelson, and E. D. Grell, 2016: Pathways to the production of precipitating hydrometeors and tropical cyclone development. Mon. Wea. Rev., 144, 23952420, https://doi.org/10.1175/MWR-D-15-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 2010: The evolution of raindrop spectra: A review of basic microphysical essentials. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 29–48, https://doi.org/10.1029/2010GM000957.

    • Crossref
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110, https://doi.org/10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., S.-Y. Hong, and K.-S. Lim, 2008: A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations: Special issue on high-resolution cloud models. J. Meteor. Soc. Japan, 86A, 33–33, https://doi.org/10.2151/jmsj.86A.33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, https://doi.org/10.1256/qj.04.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 38463879, https://doi.org/10.1175/1520-0469(1988)045<3846:NSOAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916, https://doi.org/10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., S. A. Braun, T. Matsui, and C. R. Williams, 2013: Evaluation of cloud microphysics schemes in simulations of a winter storm using radar and radiometer measurements. J. Geophys. Res. Atmos., 118, 14011419, https//doi.org/10.1002/jgrd.50115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, https://doi.org/10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, https://doi.org/10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, https://doi.org/10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modelling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44, 26402656, https://doi.org/10.1175/1520-0469(1987)044<2640:ADMSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2011: Uncertainty and complexity in cloud microphysics. Proc. ECMWF Workshop on Model Uncertainty, Reading, United Kingdom, ECMWF, 27 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/14857-uncertainty-and-complexity-cloud-microphysics.pdf.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 392 pp.

    • Crossref
    • Export Citation
  • Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, https//doi.org/10.1002/2015JD023986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, https://doi.org/10.1175/MWR-D-11-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, https://doi.org/10.1175/JAS-D-12-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2013: Physics and Dynamics of Clouds and Precipitation. Cambridge University Press, 467 pp.

    • Crossref
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, https://doi.org/10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W.-K. Tao, 2013: Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J. Geophys. Res. Atmos., 118, 11 11911 135, https//doi.org/10.1002/jgrd.50798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2987 794 62
PDF Downloads 2869 608 51