Interactions between a Nocturnal MCS and the Stable Boundary Layer as Observed by an Airborne Compact Raman Lidar during PECAN

Guo Lin Department of Atmospheric and Oceanic Sciences, and Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Guo Lin in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Zhien Wang Department of Atmospheric and Oceanic Sciences, and Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
Coltin Grasmick Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Coltin Grasmick in
Current site
Google Scholar
PubMed
Close
,
Xiaoqin Jing School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaoqin Jing in
Current site
Google Scholar
PubMed
Close
, and
Jing Yang School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jing Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Small-scale variations within the low-level outflow and inflow of an MCS can either support or deter the upscale growth and maintenance of the MCS. However, these small-scale variations, in particular in the thermodynamics (temperature and humidity), remain poorly understood, due to a lack of detailed measurements. The compact Raman lidar (CRL) deployed on the University of Wyoming King Air aircraft directly sampled temperature and water vapor profiles at unprecedented vertical and along-track resolutions along the southern margin of a series of mature nocturnal MCSs traveling along a frontal boundary on 1 July 2015 during the Plains Elevated Convection at Night (PECAN) campaign. Here, the capability of the airborne CRL to document interactions between the MCS inflow and outflow currents is illustrated. The CRL reveals the well-defined boundary of a cooler current. This is interpreted as the frontal boundary sharpened by convectively induced cold pools, in particular by the outflow boundary of the downstream MCS. In one CRL transect, the frontal/outflow boundary appeared as a distinct two-layer structure of moisture and aerosols formed by moist stable boundary layer air advected above the boundary. The second transect, one hour later, reveals a single sloping boundary. In both cases, the lofting of the moist stably stratified air over the boundary favors MCS maintenance, through enhanced elevated CAPE and reduced CIN. The CRL data are sufficiently resolved to reveal Kelvin–Helmholtz (KH) billows and the vertical structure of the outflow boundary, which in this case behaved as a density current rather than an undular bore.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhien Wang, zhien.wang@colorado.edu

Abstract

Small-scale variations within the low-level outflow and inflow of an MCS can either support or deter the upscale growth and maintenance of the MCS. However, these small-scale variations, in particular in the thermodynamics (temperature and humidity), remain poorly understood, due to a lack of detailed measurements. The compact Raman lidar (CRL) deployed on the University of Wyoming King Air aircraft directly sampled temperature and water vapor profiles at unprecedented vertical and along-track resolutions along the southern margin of a series of mature nocturnal MCSs traveling along a frontal boundary on 1 July 2015 during the Plains Elevated Convection at Night (PECAN) campaign. Here, the capability of the airborne CRL to document interactions between the MCS inflow and outflow currents is illustrated. The CRL reveals the well-defined boundary of a cooler current. This is interpreted as the frontal boundary sharpened by convectively induced cold pools, in particular by the outflow boundary of the downstream MCS. In one CRL transect, the frontal/outflow boundary appeared as a distinct two-layer structure of moisture and aerosols formed by moist stable boundary layer air advected above the boundary. The second transect, one hour later, reveals a single sloping boundary. In both cases, the lofting of the moist stably stratified air over the boundary favors MCS maintenance, through enhanced elevated CAPE and reduced CIN. The CRL data are sufficiently resolved to reveal Kelvin–Helmholtz (KH) billows and the vertical structure of the outflow boundary, which in this case behaved as a density current rather than an undular bore.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhien Wang, zhien.wang@colorado.edu
Save
  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21, 33443358, https://doi.org/10.1175/2007JCLI2266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmaier, P. T., B. Geerts, Z. Wang, B. Liu, and P. C. Campbell, 2014: A dryline in southeast Wyoming. Part II: Airborne in situ and Raman lidar observations. Mon. Wea. Rev., 142, 29612977, https://doi.org/10.1175/MWR-D-13-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW Model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H., and D. Parsons, 2016: RaXPol Radar Data, cfRadial format, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 18 February 2019, https://doi.org/10.5065/D6VD6WV2.

    • Crossref
    • Export Citation
  • Buban, M. S., and C. L. Ziegler, 2016: The formation of small-scale atmospheric vortices via baroclinic horizontal shearing instability. J. Atmos. Sci., 73, 20852104, https://doi.org/10.1175/JAS-D-14-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and Coauthors, 2012: Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service. NCAR Tech. Note NCAR/TN-488+STR, 80 pp., https://doi.org/10.5065/D6SQ8XCF.

    • Crossref
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and T. C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, https://doi.org/10.1175/MWR3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and R. K. Goodrich, 2002: Radar wind profiler radial velocity: A comparison with Doppler lidar. J. Appl. Meteor., 41, 12771282, https://doi.org/10.1175/1520-0450(2002)041<1277:RWPRVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645654, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S. H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night Field Project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2018: Recommendations for in situ and remote sensing capabilities in atmospheric convection and turbulence. Bull. Amer. Meteor. Soc., 99, 24632470, https://doi.org/10.1175/BAMS-D-17-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, K. R. Haghi, and D. B. Parsons, 2018: Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN. Mon. Wea. Rev., 146, 30973122, https://doi.org/10.1175/MWR-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168, https://doi.org/10.1175/2011JAS3737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and Coauthors, 2016: Mobile PISA 1 OU/NSSL CLAMPS radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 26 October 2018, https://doi.org/10.5065/D6416VDH.

    • Crossref
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propagation of internal bores. J. Fluid Mech., 331, 81106, https://doi.org/10.1017/S0022112096003710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, https://doi.org/10.1175/JTECH-1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, https://doi.org/10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. J. Reeder, 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 24272440, https://doi.org/10.1175/1520-0469(2001)058<2427:CGGWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, https://doi.org/10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, and W. Welch, 2014: Compact airborne Raman lidar for profiling aerosol, water vapor and clouds. Opt. Express, 22, 20 61320 621, https://doi.org/10.1364/OE.22.020613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Meoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983:Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and D. J. Stensrud, 1998: Mean monthly diurnal cycles observed with PRE-STORM surface data. J. Climate, 11, 29953009, https://doi.org/10.1175/1520-0442(1998)011<2995:MMDCOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. A., M. F. Barth, L. A. Benjamin, D. Helms, M. Campbell, J. Facundo, and J. O’ Sullivan, 2005: The Meteorological Assimilation Data Ingest System (MADIS): Providing value-added observations to the meteorological community. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., P1.95, https://ams.confex.com/ams/WAFNWP34BC/webprogram/Paper98637.html.

  • Mueller, D., B. Geerts, Z. Wang, M. Deng, and C. Grasmick, 2017: Evolution and vertical structure of an undular bore observed on 20 June 2015 during PECAN. Mon. Wea. Rev., 145, 37753794, https://doi.org/10.1175/MWR-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., R. Shibuya, J. Ito, and H. Niino, 2014: Large-eddy simulation of a residual layer: Low-level jet, convective rolls, and Kelvin–Helmholtz instability. J. Atmos. Sci., 71, 44734491, https://doi.org/10.1175/JAS-D-13-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 234 pp.

  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, https://doi.org/10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Päschke, E., R. Leinweber, and V. Lehmann, 2015: An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial. Atmos. Meas. Tech., 8, 22512266, https://doi.org/10.5194/amt-8-2251-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauly, R., 2015: An evaluation of PBL parameterizations utilizing compact airborne Raman lidar. M.S. thesis, Dept. of Atmospheric Science, University of Wyoming, 102 pp.

  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10581085, https://doi.org/10.1175/MWR-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, https://doi.org/10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and Coauthors, 2008: REFRACTT 2006: Real-time retrieval of high-resolution, low-level moisture fields from operational NEXRAD and research radars. Bull. Amer. Meteor. Soc., 89, 15351548, https://doi.org/10.1175/2008BAMS2412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rochette, S. M., and J. T. Moore, 1996: Initiation of an elevated mesoscale convective system associated with heavy rainfall. Wea. Forecasting, 11, 443457, https://doi.org/10.1175/1520-0434(1996)011<0443:IOAEMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1987: Gravity Currents in the Environment and the Laboratory. 2nd ed. Cambridge University Press, 244 pp.

  • Steinke, S., S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell, 2015: Assessment of small-scale integrated water vapour variability during HOPE. Atmos. Chem. Phys., 15, 26752692, https://doi.org/10.5194/acp-15-2675-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936, https://doi.org/10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part I: Methodology and seasonal comparison. Mon. Wea. Rev., 138, 30843106, https://doi.org/10.1175/2010MWR3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, M. K. Yau, M. Xue, and F. Kong, 2017: More on the scale dependence of the predictability of precipitation patterns: Extension to the 2009–13 CAPS Spring Experiment ensemble forecasts. Mon. Wea. Rev., 145, 36253646, https://doi.org/10.1175/MWR-D-16-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., 2016: MP1 OU/NSSL CLAMPS Doppler lidar VAD wind data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 26 October 2018, https://doi.org/10.5065/D6BR8QJH.

    • Crossref
    • Export Citation
  • Turner, D., 2018: MP1 OU/NSSL CLAMPS AERIoe thermodynamic profile retrieval data, version 1.2. UCAR/NCAR–Earth Observing Laboratory, accessed 18 February 2019, https://doi.org/10.5065/D6VQ312C.

    • Crossref
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D., D. Parsons, and B. Geerts, 2015: Plains Elevated Convection at Night (PECAN) Experiment Science Plan, DOE Rep. DOE/SC-ARM-14-035, DOE Office of Science Atmospheric Radiation Measurement (ARM) Program, 22 pp., https://www.osti.gov/servlets/purl/1232673.

  • UCAR/NCAR–Earth Observing Laboratory, 2011: NOAA/ESRL/GSD MADIS Data including MesoWest (netCDF format), version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 18 February 2019, https://data.eol.ucar.edu/dataset/100.001.

  • UCAR/NCAR–Earth Observing Laboratory, 2016a: MP4 NCAR/EOL MISS 915 MHz profiler 30 minute consensus winds and moments and surface meteorology data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 27 October 2018, https://doi.org/10.5065/D6RJ4GPJ.

    • Crossref
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 2016b: Radar regional 3D mosaic in netCDF format, DBZ and ZDR, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 27 October 2018, https://doi.org/10.5065/D6QR4VHM.

    • Crossref
    • Export Citation
  • Wagner, T. J., P. M. Klein, and D. D. Turner, 2019: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer. Bull. Amer. Meteor. Soc., 100, 137–153, https://doi.org/10.1175/BAMS-D-17-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2010: Analysis of convergence boundaries observed during IHOP_2002. Mon. Wea. Rev., 138, 27372760, https://doi.org/10.1175/2010MWR3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2016a: Airborne Raman lidar and its applications for atmospheric process studies. EPJ Web Conf., 119, 09002, https://doi.org/10.1051/epjconf/201611909002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2016b: University of Wyoming King Air compact Raman lidar data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 18 February 2019, https://doi.org/10.5065/D6MS3R0P.

    • Crossref
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B. L., and K. R. Helfrich, 2014: A model for internal bores in continuous stratification. J. Fluid Mech., 761, 282304, https://doi.org/10.1017/jfm.2014.599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2016: Airborne compact rotational Raman lidar for temperature measurement. Opt. Express, 24, A1210A1223, https://doi.org/10.1364/OE.24.0A1210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., H. S. Bauer, M. Grzeschik, A. Behrendt, F. Vandenberghe, E. V. Browell, S. Ismail, and R. A. Ferrare, 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134, 209230, https://doi.org/10.1175/MWR3070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys., 53, 819895, https://doi.org/10.1002/2014RG000476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and Coauthors, 2013: The role of satellite remote sensing in climate change studies. Nat. Climate Change, 3, 875883, https://doi.org/10.1038/nclimate1908.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 845 210 21
PDF Downloads 599 159 19