Properties of Convectively Induced Turbulence over Developing Oceanic Convection

Katelyn A. Barber University of North Dakota, Grand Forks, North Dakota

Search for other papers by Katelyn A. Barber in
Current site
Google Scholar
PubMed
Close
,
Wiebke Deierling National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wiebke Deierling in
Current site
Google Scholar
PubMed
Close
,
Gretchen Mullendore University of North Dakota, Grand Forks, North Dakota

Search for other papers by Gretchen Mullendore in
Current site
Google Scholar
PubMed
Close
,
Cathy Kessinger National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Cathy Kessinger in
Current site
Google Scholar
PubMed
Close
,
Robert Sharman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Robert Sharman in
Current site
Google Scholar
PubMed
Close
, and
Domingo Muñoz-Esparza National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Domingo Muñoz-Esparza in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convectively induced turbulence (CIT) is an aviation hazard that continues to be a forecasting challenge as operational forecast models are too coarse to resolve turbulence affecting aircraft. In particular, little is known about tropical maritime CIT. In this study, a numerical simulation of a tropical oceanic CIT case where severe turbulence was encountered by a commercial aircraft is performed. The Richardson number (Ri), subgrid-scale eddy dissipation rate (EDR), and second-order structure functions (SF) are used as diagnostics to determine which may be used for CIT related to developing and mature convection. Model-derived subgrid-scale EDR in past studies of midlatitude continental CIT was shown to be a good diagnostic of turbulence but underpredicted turbulence intensity and areal coverage in this tropical simulation. SF diagnosed turbulence with moderate to severe intensity near convection and agreed most with observations. Further, SF were used to diagnose turbulence for developing convection. Results show that the areal coverage of turbulence associated with developing convection is less than mature convection. However, the intensity of turbulence in the vicinity of developing convection is greater than the turbulence intensity in the vicinity of mature convection highlighting developing convection as an additional concern to aviation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katelyn A. Barber, katelyn.barber@und.edu

Abstract

Convectively induced turbulence (CIT) is an aviation hazard that continues to be a forecasting challenge as operational forecast models are too coarse to resolve turbulence affecting aircraft. In particular, little is known about tropical maritime CIT. In this study, a numerical simulation of a tropical oceanic CIT case where severe turbulence was encountered by a commercial aircraft is performed. The Richardson number (Ri), subgrid-scale eddy dissipation rate (EDR), and second-order structure functions (SF) are used as diagnostics to determine which may be used for CIT related to developing and mature convection. Model-derived subgrid-scale EDR in past studies of midlatitude continental CIT was shown to be a good diagnostic of turbulence but underpredicted turbulence intensity and areal coverage in this tropical simulation. SF diagnosed turbulence with moderate to severe intensity near convection and agreed most with observations. Further, SF were used to diagnose turbulence for developing convection. Results show that the areal coverage of turbulence associated with developing convection is less than mature convection. However, the intensity of turbulence in the vicinity of developing convection is greater than the turbulence intensity in the vicinity of mature convection highlighting developing convection as an additional concern to aviation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katelyn A. Barber, katelyn.barber@und.edu
Save
  • Ahmad, N. N., and F. H. Proctor, 2012: Estimation of eddy dissipation rates from mesoscale model simulations. NASA Tech. Rep. AIAA-0429, 24 pp.

    • Crossref
    • Export Citation
  • AIRBUS, 2007: Flight operations briefing notes: Adverse weather operations: Optimum use of the weather radar. AIRBUS, 17 pp., https://skybrary.aero/bookshelf/books/163.pdf.

  • Allen, B., E. R. Mansell, D. C. Dowell, and W. Deierling, 2016: Assimilation of pseudo geostationary lightning mapper data using the ensemble Kalman filter. Mon. Wea. Rev., 144, 34653486, https://doi.org/10.1175/MWR-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barber, K. A., G. L. Mullendore, and M. J. Alexander, 2018: Out-of-cloud convective turbulence: Estimation method and impacts of model resolution. J. Appl. Meteor. Climatol., 57, 121136, https://doi.org/10.1175/JAMC-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res., 115, D24202, https://doi.org/10.1029/2010JD014405.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. VII, Oxford University Press, 554 pp.

  • Brown, R., 1973: New indices to locate clear air turbulence. Meteor. Mag., 102, 347361.

  • Buldovskii, G. S., S. A. Bortnikov, and M. V. Rubinshtejn, 1976: Forecasting zones of intense turbulence in the upper troposphere. Meteor. Gidrol., 2, 918.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The thunderstorm: Report of the Thunderstorm Project. Tech. Rep., U.S. Government Printing Office, Washington, DC, 297 pp.

  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-Band polarmetric radar study. Mon. Wea. Rev., 128, 26872710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlberg, B. R., W. A. Gallus, and K. J. Franz, 2018: A preliminary examination of WRF ensemble prediction of convective mode evolution. Wea. Forecasting, 33, 783798, https://doi.org/10.1175/WAF-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, H. S., M. M. Bradley, Q. Fu, and C. R. Molenkamp, 1995: Modeling of a tropical squall line in two dimensions: Sensitivity to radiation and comparison with a midlatitude case. J. Atmos. Sci., 52, 31723193, https://doi.org/10.1175/1520-0469(1995)052<3172:MOATSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colson, D., and H. A. Panofsky, 1965: An index of clear-air turbulence. Quart. J. Roy. Meteor. Soc., 91, 507513, https://doi.org/10.1002/qj.49709139010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., 2016: Airborne in situ measurements of turbulence. Aviation Turbulence: Processes, Detection, Prediction, R. D. Sharman and T. P. Lane, Eds., Springer, 97–120.

    • Crossref
    • Export Citation
  • Dutton, M. J. O., 1980: Probability forecasts of clear-air turbulence based on numerical output. Meteor. Mag., 109, 293310.

  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165, https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and J. A. Knox, 2010: Improvements to an operational clear-air turbulence diagnostic index by addition of a divergence trend term. Wea. Forecasting, 25, 789798, https://doi.org/10.1175/2009WAF2222290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, M., J. Sherry, S. Catapano, L. Cornman, and P. Robinson, 2013: In situ performance standard for eddy dissipation rate. 16th Conf. on Aviation, Range, and Aerospace Meteorology, Austin, TX, Amer. Meteor. Soc., 11.3, https://ams.confex.com/ams/93Annual/webprogram/Paper219007.html.

  • Endlich, R. M., 1964: The mesoscale structure of some regions of clear-air turbulence. J. Appl. Meteor., 3, 261276, https://doi.org/10.1175/1520-0450(1964)003<0261:TMSOSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C. D., D. F. V. Dyke, and T. Lericos, 2014: How do forecasters utilize output from a convection-permitting ensemble forecast system? Case study of a high impact precipitation event. Wea. Forecasting, 29, 466486, https://doi.org/10.1175/WAF-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAA, 2017: Safety of flight. Aeronautical information manual: Official guide to basic flight information and ATC procedures, U.S. Department of Transportation, FAA, 435–539, https://www.faa.gov/air_traffic/publications/media/AIM_Basic_dtd_10-12-17.pdf.

  • Frehlich, R., and R. Sharman, 2004a: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev., 132, 23082324, https://doi.org/10.1175/1520-0493(2004)132<2308:EOTFNW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2004b: Estimates of upper level turbulence based on second order structure functions derived from numerical weather prediction model output. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P4.13, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81831.htm.

  • Frehlich, R., and R. Sharman, 2010: Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. J. Appl. Meteor. Climatol., 49, 11491169, https://doi.org/10.1175/2010JAMC2196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, https://doi.org/10.1029/2006GL027504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and N. A. Davis, 2011: The seasonal cycle of midlatitude static stability over land and ocean in global reanalyses. Geophys. Res. Lett., 38, L13803, https://doi.org/10.1029/2011GL047747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, https://doi.org/10.1175/JCLI4297.1.

    • Search Google Scholar
    • Export Citation
  • Garstang, M., and D. R. Fitzjarrald, Eds., 1999: Introduction. Observations of Surface-to-Atmosphere Interactions in the Tropics, Oxford University Press, 3–48.

  • Herzegh, P., 2002: Development of automated aviation weather products for oceanic/remote regions: Scientific and practical challenges, research strategies, and first steps. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., P3.1, https://ams.confex.com/ams/13ac10av/techprogram/paper_38762.htm.

  • Iyer, E. R., A. J. Clark, M. Xue, and F. Kong, 2016: A comparison of 36–60-h precipitation forecasts from convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 31, 647661, https://doi.org/10.1175/WAF-D-15-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. L., 1990: Clear air turbulence as a response to meso- and synoptic-scale dynamic processes. Mon. Wea. Rev., 118, 22282242, https://doi.org/10.1175/1520-0493(1990)118<2228:CATAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessinger, C. J., 2017: An update on the convective diagnosis oceanic algorithm. 18th Conf. on Aviation, Range, and Aerospace Meteorology, Seattle, WA, Amer. Meteor. Soc., 211, https://ams.confex.com/ams/97Annual/webprogram/Paper314031.html.

  • Kessinger, C. J., and Coauthors, 2008: Convection diagnosis and nowcasting for oceanic aviation applications. Proc. SPIE, 7088, 708808, https://doi.org/10.1117/12.795495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and H. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311324, https://doi.org/10.1175/2010JAMC2492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 2001: The breakdown of balance in low potential vorticity regions: Evidence from a clear air turbulence outbreak. Preprints, 13th Conf. on Atmospheric and Oceanic Fluid Dynamics, Breckenridge, CO, Amer. Meteor. Soc., P2.4, https://ams.confex.com/ams/13FLUID/webprogram/Paper21099.html.

  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908, https://doi.org/10.1175/JAS3574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid at high Reynolds number. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. J. Reeder, 2001: Modelling the generation of gravity waves by a maritime continent thunderstorm. Quart. J. Roy. Meteor. Soc., 127, 27052724, https://doi.org/10.1002/qj.49712757810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 27772796, https://doi.org/10.1175/2008JAMC1787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2014: Intensity of thunderstorm-generated turbulence revealed by large-eddy simulation. Geophys. Res. Lett., 41, 22212227, https://doi.org/10.1002/2014GL059299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H. M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. D. Sharman, M. A. Shapiro, and C. D. Watson, 2009: Statistics and dynamics of aircraft encounters of turbulence over Greenland. Mon. Wea. Rev., 137, 26872702, https://doi.org/10.1175/2009MWR2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, https://doi.org/10.1175/BAMS-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., and H. Chun, 2018: A numerical study of aviation turbulence encountered on 13 February 2013 over the Yellow Sea between China and the Korean Peninsula. J. Appl. Meteor. Climatol., 57, 10431060, https://doi.org/10.1175/JAMC-D-17-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2010: Isolated convective storms. Mesoscale Dynamics, Cambridge University Press, 272–321.

    • Crossref
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marconnet, D., C. Norden, and L. Vidal, 2016: Optimal use of weather radar. 22 pp., http://www.smartcockpit.com/docs/optimum-use-of-weather-radar-airbus-safety-first-nr22.pdf.

  • Markowski, P., and Y. Richardson, 2010: Organization of isolated convection. Mesoscale Meteorology in Midlatitudes, Wiley-Blackwell, 201–244, https://doi.org/10.1002/9780470682104.ch8.

    • Crossref
    • Export Citation
  • Marroquin, A., 1998: An advanced algorithm to diagnose atmospheric turbulence using numerical model output. 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 79–81.

  • Mullendore, G. L., A. J. Homann, S. T. Jorgenson, T. J. Lang, and S. A. Tessendorf, 2013: Relationship between level of neutral buoyancy and dual-Doppler observed mass detrainment levels in deep convection. Atmos. Chem. Phys., 13, 181190, https://doi.org/10.5194/acp-13-181-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., and R. Sharman, 2018: An improved algorithm for low-level turbulence forecasting. J. Appl. Meteor. Climatol., 57, 12491263, https://doi.org/10.1175/JAMC-D-17-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., R. Sharman, J. Sauer, and B. Kosović, 2018: Toward low-level turbulence forcasting at eddy-resolving scales. Geophys. Res. Lett., 45, 86558664, https://doi.org/10.1029/2018GL078642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantley, K. C., and P. F. Lester, 1990: Observations of severe turbulence near thunderstorm tops. J. Appl. Meteor., 29, 11711179, https://doi.org/10.1175/1520-0450(1990)029<1171:OOSTNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, J. M., and R. D. Sharman, 2017: Prediction of energy dissipation rates for aviation turbulence. Part II: Nowcasting convective and nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 339351, https://doi.org/10.1175/JAMC-D-16-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poellot, M. R., and C. A. Grainger, 1991: A comparison of several airborne measures of turbulence. Preprints, Fourth Int. Conf. on the Aviation Weather Systems, Paris, France, Amer. Meteor. Soc.

  • Saha, K. R., and S. S. Singh, 1972: On the distribution of mean static stability and mean Richardson number in the tropical atmosphere. J. Meteor. Soc. Japan, 109, 313323.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn., 2, 279290, https://doi.org/10.1007/BF00271468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., and J. M. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317337, https://doi.org/10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., and S. B. Trier, 2019: Influences of gravity waves on convectively induced turbulence (CIT): A review. Pure Appl. Geophys., 176, 19231958, https://doi.org/10.1007/s00024-018-1849-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268287, https://doi.org/10.1175/WAF924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., J. D. Doyle, and M. A. Shapiro, 2012: An investigation of a commercial aircraft encounter with severe clear-air turbulence over western Greenland. J. Appl. Meteor. Climatol., 51, 4253, https://doi.org/10.1175/JAMC-D-11-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, https://doi.org/10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. S. Weygandt, T. Smirnova, and B. E. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh Model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1, https://ams.confex.com/ams/24SLS/techprogram/paper_142055.htm.

  • Storer, L. N., P. G. Gill, and P. D. Williams, 2018: Multi-model ensemble predictions of aviation turbulence. Meteor. Appl., 1, 10021041.

    • Search Google Scholar
    • Export Citation
  • Tapia, A., J. A. Smith, and M. Dixon, 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 14971509, https://doi.org/10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 19721990, https://doi.org/10.1175/2008MWR2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2016: Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Mon. Wea. Rev., 144, 30033027, https://doi.org/10.1175/MWR-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2018: Trapped gravity waves and their association with turbulence in a large thunderstorm anvil during PECAN. Mon. Wea. Rev., 146, 30313052, https://doi.org/10.1175/MWR-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 24772496, https://doi.org/10.1175/MWR-D-11-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USAF, 1982: Weather for aircrews. Rep. AFN51-12VI, Vol. 1, USAF, 187 pp.

  • Vant-Hull, B., W. Rossow, and C. Pearl, 2016: Global comparisons of regional life cycle properties and motion of multiday convective systems: Tropical and midlatitude land and ocean. J. Climate, 29, 58375858, https://doi.org/10.1175/JCLI-D-15-0698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, G. N., and C. R. Sampson, 1996: Clear air turbulence indices derived from U.S. Navy numerical model data: A verification study. Rep. NRL/MR/7543-96-7223, Naval Research Laboratory, Monterey, CA, 30 pp.

  • Williams, J. K., and G. Meymaris, 2016: Remote turbulence detection using groud-based Doppler radar. Aviation Turbulence: Processes, Detection, Prediction, R. D. Sharman and T. P. Lane, Eds., Springer, 149–177.

    • Crossref
    • Export Citation
  • Wissmeier, U., and R. Goler, 2009: A comparison of tropical and midlatitude thunderstorm evolution in response to wind shear. J. Atmos. Sci., 66, 23852401, https://doi.org/10.1175/2009JAS2963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze, A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44, 385415, https://doi.org/10.1175/JAM2206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zovko-Rajak, D., and T. P. Lane, 2014: The generation of near-cloud turbulence in idealized simulations. J. Atmos. Sci., 71, 24302451, https://doi.org/10.1175/JAS-D-13-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1074 295 47
PDF Downloads 942 238 34