Combining Hybrid and One-Step-Ahead Smoothing for Efficient Short-Range Storm Surge Forecasting with an Ensemble Kalman Filter

Naila F. Raboudi King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Naila F. Raboudi in
Current site
Google Scholar
PubMed
Close
,
Boujemaa Ait-El-Fquih King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Boujemaa Ait-El-Fquih in
Current site
Google Scholar
PubMed
Close
,
Clint Dawson The University of Texas at Austin, Austin, Texas

Search for other papers by Clint Dawson in
Current site
Google Scholar
PubMed
Close
, and
Ibrahim Hoteit King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Search for other papers by Ibrahim Hoteit in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work combines two auxiliary techniques, namely the one-step-ahead (OSA) smoothing and the hybrid formulation, to boost the forecasting skills of a storm surge ensemble Kalman filter (EnKF) forecasting system. Bayesian filtering with OSA-smoothing enhances the robustness of the ensemble background statistics by exploiting the data twice: first to constrain the sampling of the forecast ensemble with the future observation, and then to update the resulting ensemble. This is expected to improve the behavior of EnKF-like schemes during the strongly nonlinear surges periods, but requires integrating the ensemble with the forecast model twice, which could be computationally demanding. The hybrid flow-dependent/static formulation of the EnKF background error covariance is then considered to enable the implementation of the filter with a small flow-dependent ensemble size, and thus less model runs. These two methods are combined within an ensemble transform Kalman filter (ETKF). The resulting hybrid ETKF with OSA smoothing is tested, based on twin experiments, using a realistic setting of the Advanced Circulation (ADCIRC) model configured for storm surge forecasting in the Gulf of Mexico and assimilating pseudo-observations of sea surface levels from a network of buoys. The results of our numerical experiments suggest that the proposed filtering system significantly enhances ADCIRC forecasting skills compared to the standard ETKF without increasing the computational cost.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ibrahim Hoteit, Ibrahim.hoteit@kaust.edu.sa

Abstract

This work combines two auxiliary techniques, namely the one-step-ahead (OSA) smoothing and the hybrid formulation, to boost the forecasting skills of a storm surge ensemble Kalman filter (EnKF) forecasting system. Bayesian filtering with OSA-smoothing enhances the robustness of the ensemble background statistics by exploiting the data twice: first to constrain the sampling of the forecast ensemble with the future observation, and then to update the resulting ensemble. This is expected to improve the behavior of EnKF-like schemes during the strongly nonlinear surges periods, but requires integrating the ensemble with the forecast model twice, which could be computationally demanding. The hybrid flow-dependent/static formulation of the EnKF background error covariance is then considered to enable the implementation of the filter with a small flow-dependent ensemble size, and thus less model runs. These two methods are combined within an ensemble transform Kalman filter (ETKF). The resulting hybrid ETKF with OSA smoothing is tested, based on twin experiments, using a realistic setting of the Advanced Circulation (ADCIRC) model configured for storm surge forecasting in the Gulf of Mexico and assimilating pseudo-observations of sea surface levels from a network of buoys. The results of our numerical experiments suggest that the proposed filtering system significantly enhances ADCIRC forecasting skills compared to the standard ETKF without increasing the computational cost.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ibrahim Hoteit, Ibrahim.hoteit@kaust.edu.sa
Save
  • Ait-El-Fquih, B., and I. Hoteit, 2016: A variational Bayesian multiple particle filtering scheme for large-dimensional systems. IEEE Trans. Signal. Process., 64, 54095422, https://doi.org/10.1109/TSP.2016.2580524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ait-El-Fquih, B., M. El Gharamti, and I. Hoteit, 2016: A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology. Hydrol. Earth Syst. Sci., 20, 32893307, https://doi.org/10.5194/hess-20-3289-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaf, M., T. Butler, X. Luo, C. Dawson, T. Mayo, and I. Hoteit, 2013: Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon. Wea. Rev., 141, 27052720, https://doi.org/10.1175/MWR-D-12-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaf, M., T. Butler, T. Mayo, X. Luo, C. Dawson, A. Heemink, and I. Hoteit, 2014: A comparison of ensemble Kalman filters for storm surge assimilation. Mon. Wea. Rev., 142, 28992914, https://doi.org/10.1175/MWR-D-13-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 364 pp.

    • Crossref
    • Export Citation
  • Berg, R., 2009: Tropical cyclone report: Hurricane Ike (1–14 September 2008). NHC Rep. AL092008, National Hurricane Center, 55 pp., https://www.hcfcd.org/media/1240/nhc_hurricane_ike_report.pdf.

  • Beven, K., 1989: Changing ideas in hydrology—The case of physically-based models. J. Hydrol., 105, 157172, https://doi.org/10.1016/0022-1694(89)90101-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., E. N. Rappaport, and C. W. Landsea, 2007: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS TPC-5, NOAA/National Weather Service, National Centers for Environmental Prediction, National Hurricane Center, 45 pp.

  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, T., M. Altaf, C. Dawson, I. Hoteit, X. Luo, and T. Mayo, 2012: Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon. Wea. Rev., 140, 22152231, https://doi.org/10.1175/MWR-D-11-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron, Eds., 2018: New Frontiers in Operational Oceanography. CreateSpace Independent Publishing Platform, 812 pp.

    • Crossref
    • Export Citation
  • Dawson, C., J. J. Westerink, J. C. Feyen, and D. Pothina, 2006: Continuous, discontinuous and coupled discontinuous–continuous Galerkin finite element methods for the shallow water equations. Int. J. Numer. Methods Fluids, 52, 6388, https://doi.org/10.1002/fld.1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbouvries, F., Y. Petetin, and B. Ait-El-Fquih, 2011: Direct, prediction- and smoothing-based Kalman and particle filter algorithms. Signal Process., 91, 20642077, https://doi.org/10.1016/j.sigpro.2011.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietrich, J., and Coauthors, 2011a: Hurricane Gustav (2008) waves and storm surge: Hindcast, synoptic analysis, and validation in southern Louisiana. Mon. Wea. Rev., 139, 24882522, https://doi.org/10.1175/2011MWR3611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietrich, J., and Coauthors, 2011b: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coastal Eng., 58, 4565, https://doi.org/10.1016/j.coastaleng.2010.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, J. G., C. W. Fulcher, R. A. Luettich, B. D. Estrade, G. D. Allen, and H. S. Winer, 2008: A real time storm surge forecasting system using ADCIRC. Proc. 10th Int. Conf. on Estuarine and Coastal Modeling, Newport, RI, American Society of Civil Engineers, 893–912, https://doi.org/10.1061/40990(324)48.

    • Crossref
    • Export Citation
  • Flowerdew, J., K. Horsburgh, C. Wilson, and K. Mylne, 2010: Development and evaluation of an ensemble forecasting system for coastal storm surges. Quart. J. Roy. Meteor. Soc., 136, 14441456, https://doi.org/10.1002/qj.648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flowerdew, J., K. Mylne, C. Jones, and H. Titley, 2013: Extending the forecast range of the UK storm surge ensemble. Quart. J. Roy. Meteor. Soc., 139, 184197, https://doi.org/10.1002/qj.1950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., 1989: Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework. Dyn. Atmos. Oceans, 13, 171218, https://doi.org/10.1016/0377-0265(89)90040-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heaps, N., 1983: Storm surges, 1967–1982. Geophys. J. Int., 74, 331376, https://doi.org/10.1111/j.1365-246X.1983.tb01883.x.

  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, M. E., and Coauthors, 2013: Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. J. Geophys. Res. Oceans, 118, 44244460, https://doi.org/10.1002/jgrc.20314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D. T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J. Mar. Syst., 36, 101127, https://doi.org/10.1016/S0924-7963(02)00129-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., G. Korres, and G. Triantafyllou, 2005: Comparison of extended and ensemble based Kalman filters with low and high-resolution primitive equations ocean models. Nonlinear Processes Geophys., 12, 755765, https://doi.org/10.5194/npg-12-755-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., X. Luo, and D. T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Mon. Wea. Rev., 140, 528542, https://doi.org/10.1175/2011MWR3640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., T. Hoar, G. Gopalakrishnan, N. Collins, J. Anderson, B. Cornuelle, A. Köhl, and P. Heimbach, 2013: A MITGCM/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn. Atmos. Oceans, 63, 123, https://doi.org/10.1016/j.dynatmoce.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., D.-T. Pham, M. Gharamti, and X. Luo, 2015: Mitigating observation perturbation sampling errors in the stochastic EnKF. Mon. Wea. Rev., 143, 29182936, https://doi.org/10.1175/MWR-D-14-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

  • Kalnay, E., and S.-C. Yang, 2010: Accelerating the spin-up of ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 136, 16441651, https://doi.org/10.1002/qj.652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A. B., and Coauthors, 2011: Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett., 38, L08608, https://doi.org/10.1029/2011GL047090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., B. Ait-El-Fquih, and I. Hoteit, 2016: Efficient kernel-based ensemble Gaussian mixture filtering. Mon. Wea. Rev., 144, 781800, https://doi.org/10.1175/MWR-D-14-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, https://doi.org/10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luettich, R. A., and J. J. Westerink, 2004: Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX. R. Luettich, 74 pp.

  • Luettich, R. A., and J. J. Westerink, 2007: A parallel ADvanced CIRCulation model for oceanic coastal and estuarine waters. Tech. Rep., ADCIRC, http://www.adcirc.org.

  • Luo, X., and I. Hoteit, 2011: Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Mon. Wea. Rev., 139, 39383953, https://doi.org/10.1175/MWR-D-10-05068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, D. R., and W. G. Gray, 1979: A wave equation model for finite element tidal computations. Comput. Fluids, 7, 207228, https://doi.org/10.1016/0045-7930(79)90037-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malanotte-Rizzoli, P., R. E. Young, and D. B. Haidvogel, 1989: Initialization and data assimilation experiments with a primitive equation model. Dyn. Atmos. Oceans, 13, 349378, https://doi.org/10.1016/0377-0265(89)90046-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillan, H. K., and J. Brasington, 2008: End-to-end flood risk assessment: A coupled model cascade with uncertainty estimation. Water Resour. Res., 44, W03419, https://doi.org/10.1029/2007WR005995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McRobie, A., T. Spencer, and H. Gerritsen, 2005: The big flood: North Sea storm surge. Philos. Trans. Roy. Soc. London, 363, 12631270, https://doi.org/10.1098/rsta.2005.1567.

    • Search Google Scholar
    • Export Citation
  • Mel, R., and P. Lionello, 2014a: Storm surge ensemble prediction for the city of Venice. Wea. Forecasting, 29, 10441057, https://doi.org/10.1175/WAF-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mel, R., and P. Lionello, 2014b: Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea. Ocean Dyn., 64, 18031814, https://doi.org/10.1007/s10236-014-0782-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mel, R., and P. Lionello, 2016: Probabilistic dressing of a storm surge prediction in the Adriatic Sea. Adv. Meteor., 2016, 3764519, https://doi.org/10.1155/2016/3764519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mel, R., D. P. Viero, L. Carniello, A. Defina, and L. D’Alpaos, 2014: Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Adv. Water Resour., 71, 177185, https://doi.org/10.1016/j.advwatres.2014.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, T. S., R. A. Flather, and R. Henry, 1986: The storm surge problem in the Bay of Bengal. Prog. Oceanogr., 16, 195233, https://doi.org/10.1016/0079-6611(86)90039-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 11941207, https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16, 323340, https://doi.org/10.1016/S0924-7963(97)00109-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raboudi, N. F., B. Ait-El-Fquih, and I. Hoteit, 2018: Ensemble Kalman filtering with one-step-ahead smoothing. Mon. Wea. Rev., 146, 561581, https://doi.org/10.1175/MWR-D-17-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakov, P., and L. Bertino, 2011: Relation between two common localisation methods for the EnKF. Comput. Geosci., 15, 225237, https://doi.org/10.1007/s10596-010-9202-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siripatana, A., T. Mayo, I. Sraj, O. Knio, C. Dawson, O. Le Maitre, and I. Hoteit, 2017: Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC. Ocean Dyn., 67, 10671094, https://doi.org/10.1007/s10236-017-1074-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H., I. Hoteit, B. D. Cornuelle, and A. C. Subramanian, 2010: An adaptive approach to mitigate background covariance limitations in the ensemble Kalman filter. Mon. Wea. Rev., 138, 28252845, https://doi.org/10.1175/2010MWR2871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, S., S. Bunya, J. J. Westerink, C. Dawson, and R. A. Luettich, 2011: Scalability of an unstructured grid continuous Galerkin based hurricane storm surge model. J. Sci. Comput., 46, 329358, https://doi.org/10.1007/s10915-010-9402-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 14851490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, J. M., B. Bass, J. N. Irza, J. Proft, A. Sebastian, C. Dawson, and P. Bedient, 2017: Modeling the hydrodynamic performance of a conceptual storm surge barrier system for the Galveston Bay region. J. Waterway Port Coastal Ocean Eng., 143, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toye, H., P. Zhan, G. Gopalakrishnan, A. R. Kartadikaria, H. Huang, O. Knio, and I. Hoteit, 2017: Ensemble data assimilation in the Red Sea: Sensitivity to ensemble selection and atmospheric forcing. Ocean Dyn., 67, 915933, https://doi.org/10.1007/s10236-017-1064-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsiaras, K. P., I. Hoteit, S. Kalaroni, G. Petihakis, and G. Triantafyllou, 2017: A hybrid ensemble-OI Kalman filter for efficient data assimilation into a 3-D biogeochemical model of the Mediterranean. Ocean Dyn., 67, 673690, https://doi.org/10.1007/s10236-017-1050-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605, https://doi.org/10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model errors due to unresolved scales. Mon. Wea. Rev., 137, 32193232, https://doi.org/10.1175/2009MWR2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, L., M. Li, and D.-L. Zhang, 2010: How do uncertainties in hurricane model forecasts affect storm surge predictions in a semi-enclosed bay? Estuarine Coastal Shelf Sci., 90, 6172, https://doi.org/10.1016/j.ecss.2010.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 90 4
PDF Downloads 344 73 7