Factors Affecting the Inland and Orographic Enhancement of Sea-Effect Snowfall in the Hokuriku Region of Japan

Peter G. Veals Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Peter G. Veals in
Current site
Google Scholar
PubMed
Close
,
W. James Steenburgh Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
,
Sento Nakai Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Resilience, Nagaoka, Japan

Search for other papers by Sento Nakai in
Current site
Google Scholar
PubMed
Close
, and
Satoru Yamaguchi Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Resilience, Nagaoka, Japan

Search for other papers by Satoru Yamaguchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Hokuriku region along the west coast of the Japanese island of Honshu receives exceptionally heavy snowfall accumulations, exceeding 500 cm from December to February near sea level and 1300 cm at high elevation sites, much of which is produced by sea-effect systems. Though the climatological enhancement of snowfall is large, the lowland–upland snowfall distribution within individual storms is highly variable, presenting a challenge for weather forecasting and climate projections. Utilizing data from a C-band surveillance radar, the ERA5 reanalysis, and surface precipitation observations, we examine factors affecting the inland and orographic enhancement during sea-effect periods in the Hokuriku region during nine winters (December–February) from December 2007 to February 2016. The distribution and intensity of precipitation exhibits strong dependence on flow direction due to three-dimensional terrain effects. For a given flow direction, higher values of boundary layer wind speed and sea-induced CAPE favor higher precipitation rates, a maximum displaced farther inland and higher in elevation, and a larger ratio of upland to lowland precipitation. These characteristics are also well represented by the nondimensional mountain height H^, with H^<1 associated with a precipitation maximum over the high elevations and a larger ratio of upland to lowland precipitation, and H^>1 having the opposite effect. Nevertheless, even in high enhancement periods, precipitation rates decline as one moves inland from the first major mountain barrier, even over high terrain. These results highlight how the interplay between sea-effect and orographic processes modulates the distribution and intensity of precipitation in an area of complex and formidable topography.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter G. Veals, peter.veals@utah.edu

Abstract

The Hokuriku region along the west coast of the Japanese island of Honshu receives exceptionally heavy snowfall accumulations, exceeding 500 cm from December to February near sea level and 1300 cm at high elevation sites, much of which is produced by sea-effect systems. Though the climatological enhancement of snowfall is large, the lowland–upland snowfall distribution within individual storms is highly variable, presenting a challenge for weather forecasting and climate projections. Utilizing data from a C-band surveillance radar, the ERA5 reanalysis, and surface precipitation observations, we examine factors affecting the inland and orographic enhancement during sea-effect periods in the Hokuriku region during nine winters (December–February) from December 2007 to February 2016. The distribution and intensity of precipitation exhibits strong dependence on flow direction due to three-dimensional terrain effects. For a given flow direction, higher values of boundary layer wind speed and sea-induced CAPE favor higher precipitation rates, a maximum displaced farther inland and higher in elevation, and a larger ratio of upland to lowland precipitation. These characteristics are also well represented by the nondimensional mountain height H^, with H^<1 associated with a precipitation maximum over the high elevations and a larger ratio of upland to lowland precipitation, and H^>1 having the opposite effect. Nevertheless, even in high enhancement periods, precipitation rates decline as one moves inland from the first major mountain barrier, even over high terrain. These results highlight how the interplay between sea-effect and orographic processes modulates the distribution and intensity of precipitation in an area of complex and formidable topography.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter G. Veals, peter.veals@utah.edu
Save
  • Akiyama, T., 1981a: Time and spatial variations of heavy snowfalls in the Japan Sea coastal region. Part I: Principal time and space variations of precipitation described by EOF. J. Meteor. Soc. Japan, 59, 578590, https://doi.org/10.2151/jmsj1965.59.4_578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akiyama, T., 1981b: Time and spatial variations of heavy snowfalls in the Japan Sea coastal region. Part II: Large-scale situations for typical spatial distributions of heavy snowfalls classified by EOF. J. Meteor. Soc. Japan, 59, 591601, https://doi.org/10.2151/jmsj1965.59.4_591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, https://doi.org/10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1972: Thermal instability of a shear flow turning the direction with height. J. Meteor. Soc. Japan, 50, 525532, https://doi.org/10.2151/jmsj1965.50.6_525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P., 1987: Upstream blocking and airflow over mountains. Annu. Rev. Fluid Mech., 19, 7597, https://doi.org/10.1146/annurev.fl.19.010187.000451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcilon, A., J. C. Jusem, and P. G. Drazin, 1979: On the two-dimensional hydrostatic flow of a stream of moist air over a mountain ridge. Geophys. Astrophys. Fluid Dyn., 13, 125140, https://doi.org/10.1080/03091927908243765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J., and T.-J. Chen, 1987: Synoptic aspects of the wintertime East Asian Monsoon. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Ed., Oxford University Press, 125–160.

  • Byrd, G. P., R. A. Anstett, J. E. Heim, and D. M. Usinski, 1991: Mobile sounding observations of lake-effect snow bands in western and central New York. Mon. Wea. Rev., 119, 23232332, https://doi.org/10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 17291748, https://doi.org/10.1175/MWR-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., W. J. Steenburgh, Y. Yamada, M. Kawashima, and Y. Fujiyoshi, 2018: Influences of orography and coastal geometry on a transverse-mode sea-effect snowstorm over Hokkaido Island, Japan. Mon. Wea. Rev., 146, 22012220, https://doi.org/10.1175/MWR-D-17-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. The Asian Monsoon, B. Wang, Ed., Springer, 89–127.

    • Crossref
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, K. A., M. R. Hjelmfelt, D. A. R. Kristovich, N. F. Laird, and R. G. Derickson, 2000: Numerical simulations of transitions in boundary layer convective structures in a lake-effect snow event. Mon. Wea. Rev., 128, 32833295, https://doi.org/10.1175/1520-0493(2000)128<3283:NSOTIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., R. C. Beardsley, N. A. Dashko, C. A. Friehe, D. Kheilf, K. Cho, R. Limeburner, and S. M. Varlamov, 2004: Winter marine atmospheric conditions over the Japan Sea. J. Geophys. Res., 109, C12011, https://doi.org/10.1029/2001JC001197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: The effects of moisture on trapped mountain lee waves. J. Atmos. Sci., 39, 24902506, https://doi.org/10.1175/1520-0469(1982)039<2490:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Earth Observing Laboratory, 2019: Radx. National Center for Atmospheric Research, accessed 7 January 2019, https://github.com/NCAR/lrose-core/releases.

  • ECMWF, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S), accessed 11 August 2018, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Eipper, D. T., G. S. Young, S. J. Greybush, S. Saslo, T. D. Sikora, and R. D. Clark, 2018: Predicting the inland penetration of long-lake-axis-parallel snowbands. Wea. Forecasting, 33, 14351451, https://doi.org/10.1175/WAF-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., T. Kato, M. Yoshizaki, and A. Adachi, 2005: Numerical simulation of the quasistationary snowband observed over the southern coastal area of the Sea of Japan on 16 January 2001. J. Meteor. Soc. Japan, 83, 551576, https://doi.org/10.2151/jmsj.83.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., M. Murakami, C. Muroi, T. Kato, S. Hayashi, H. Kuroiwa, M. Yoshizaki, 2010: The structure and formation mechanism of transversal cloud bands associated with the Japan-Sea Polar-Airmass Convergence Zone. J. Meteor. Soc. Japan, 88, 625648, https://doi.org/10.2151/jmsj.2010-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, A. B., R. C. Easter, and P. V. Hobbs, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part I: Airflow model. J. Atmos. Sci., 30, 801812, https://doi.org/10.1175/1520-0469(1973)030<0801:ATSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., H. Niino, R. Kimura, and T. Kato, 2004: Multiple polar mesocyclones over the Japan Sea on 11 February 1997. Mon. Wea. Rev., 132, 793814, https://doi.org/10.1175/1520-0493(2004)132<0793:MPMOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., T. Endoh, T. Yamada, K. Tsuboki, Y. Tachibana, and G. Wakahama, 1990: Determination of a Z–R relationship for snowfall using a radar and high sensitivity snow gauges. J. Appl. Meteor. Climatol., 29, 147152, https://doi.org/10.1175/1520-0450(1990)029<0147:DOARFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., K. Tsuboki, S. Satoh, and G. Wakahama, 1992: Three-dimensional radar echo structure of a snow band formed on the lee side of a mountain. J. Meteor. Soc. Japan, 70, 1124, https://doi.org/10.2151/jmsj1965.70.1_11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2008: Orographic clouds in terrain-blocked flows: An idealized modeling study. J. Atmos. Sci., 65, 34603478, https://doi.org/10.1175/2008JAS2435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison final report. Instruments and observing methods, Rep. 67, WMO/TD-872, 318 pp., http://www.wmo.int/pages/prog/www/reports/WMOtd872.pdf.

  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, S., and K. Yokoyama, 1998: Estimation of snowfall, maximum snow depth and snow cover condition in Japan under global climate change. Seppyo, 60, 367378, https://doi.org/10.5331/seppyo.60.367.

    • Search Google Scholar
    • Export Citation
  • Ishihara, M., H. Sakakibara, and Z. Yanagisawa, 1989: Doppler radar analysis of the structure of mesoscale snow bands developed between the winter monsoon and the land breeze. J. Meteor. Soc. Japan, 67, 503520, https://doi.org/10.2151/jmsj1965.67.4_503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwamoto, K., S. Nakai, and A. Sato, 2008: Statistical analyses of snowfall distribution in the Niigata area and its relationship to the wind distribution. SOLA, 4, 4548, https://doi.org/10.2151/sola.2008-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2018: Automated Meteorological Data Acquisition System (AMeDAS) surface observation data. Japan Meteorological Agency, accessed 15 May 2018, http://www.data.jma.go.jp/risk/obsdl/index.php.

  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, https://doi.org/10.3402/tellusa.v55i4.14577.

  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, https://doi.org/10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor., 63, 293315, https://doi.org/10.1007/BF00710463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., N. F. Laird, M. R. Hjelmfelt, R. G. Derickson, and K. A. Cooper, 1999: Transitions in boundary layer meso-γ convective structures: An observational case study. Mon. Wea. Rev., 127, 28952909, https://doi.org/10.1175/1520-0493(1999)127<2895:TIBLMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, K., M. Murakami, M. Hoshimoto, N. Orikasa, Y. Yamada, H. Mizuno, K. Hamazu, and H. Watanabe, 2004: The characteristics and evolution of orographic snow clouds under weak cold advection. Mon. Wea. Rev., 132, 174191, https://doi.org/10.1175/1520-0493(2004)132<0174:TCAEOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., K. Kikuchi, T. Kimura, S. Tazawa, and T. Kasai, 1966: A study on the snowfall in the winter monsoon season in Hokkaido with special reference to low land snowfall. J. Fac. Sci. Hokkaido Univ. Ser. 7, 11, 287–308.

  • Manabe, S., 1957: On the modification of air-mass over the Japan Sea when the outburst of cold air predominates. J. Meteor. Soc. Japan, 35, 311326, https://doi.org/10.2151/jmsj1923.35.6_311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • McGill, R., J. W. Tukey, and W. A. Larsen, 1978: Variations of box plots. Amer. Stat., 32, 1216, https://doi.org/10.2307/2683468.

  • Metcalfe, J. R., and B. E. Goodison, 1993: Correction of Canadian winter precipitation data. Preprints, Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 338343.

  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. Letcher, L. S. Campbell, P. G. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, https://doi.org/10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, Y., 1986: Aspect ratios of longitudinal rolls and convection cells observed during cold air outbreaks. J. Atmos. Sci., 43, 2639, https://doi.org/10.1175/1520-0469(1986)043<0026:AROLRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazawa, S., 1968: A mesoclimatological study on heavy snowfall. Pap. Meteor. Geophys., 19, 487550, https://doi.org/10.2467/mripapers1950.19.4_487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizukoshi, M., 1977: Climatic division and climatography. The Climate of Japan, E. Fukui, Ed., Kondasha, 225–270.

  • Nagata, M., 1991: Further numerical study on the formation of the convergent cloud band over the Japan Sea in winter. J. Meteor. Soc. Japan, 69, 419428, https://doi.org/10.2151/jmsj1965.69.3_419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., M. Ikawa, S. Yoshizumi, and T. Yoshida, 1986: On the formation of a convergent cloud band over the Japan Sea in winter; numerical experiments. J. Meteor. Soc. Japan, 64, 841855, https://doi.org/10.2151/jmsj1965.64.6_841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., and T. Endoh, 1995: Observation of snowfall and airflow over a low mountain barrier. J. Meteor. Soc. Japan, 73, 183199, https://doi.org/10.2151/jmsj1965.73.2_183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., and S. Yamaguchi, 2018: Aiming for a secure and comfortable life in Japan’s snowy district. Snow and Weather observation Network (SW-Net). National Research Institute for Earth Science and Disaster Resilience, accessed 5 October 2018, http://www.bosai.go.jp/seppyo/index_e.html.

  • Nakai, S., K. Iwanami, R. Misumi, S.-G. Park, and T. Kobayashi, 2005: A classification of snow clouds by Doppler radar observations at Nagaoka, Japan. SOLA, 1, 161164, https://doi.org/10.2151/sola.2005-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., T. Kato, K. Iwamoto, and M. Ishizaka, 2006: A comparison of precipitation intensity from radar with model results around coastal topography during cold-air outbreak periods. 13th Conf. on Mountain Meteorology, Whistler, BC, Canada, Amer. Meteor. Soc., P1.20, https://ams.confex.com/ams/13MontMet17AP/webprogram/Paper141037.html.

  • Nakai, S., H. Motoyoshi, T. Kumakura, M. Ishizaka, K. Yamashita, and S. Murakami, 2018: Zh–R relations for each type of solid precipitation particle: Observational examination for less-rimed particle. Spring 2018 Meeting of the Meteorological Society of Japan, Tsukuba, Japan, Meteorological Society of Japan, B204.

  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1994: Meso-scale low family formed over the northeastern Japan Sea in the northwestern part of a parent polar low. J. Meteor. Soc. Japan, 72, 589603, https://doi.org/10.2151/jmsj1965.72.4_589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., K. Wakahara, and H. Okhubo, 1993: Meso-alpha scale low development over the northeastern Japan Sea under the influence of a parent large-scale low and a cold vortex aloft. J. Meteor. Soc. Japan, 71, 7391, https://doi.org/10.2151/jmsj1965.71.1_73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, https://doi.org/10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T., and K. Tsuboki, 2005: Structure and maintenance process of stationary double snowbands along the coastal region. J. Meteor. Soc. Japan, 83, 331349, https://doi.org/10.2151/jmsj.83.331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T., and K. Tsuboki, 2007: Shift and intensification processes of the Japan-Sea polar-airmass convergence zone associated with the passage of a mid-tropospheric cold core. J. Meteor. Soc. Japan, 85, 633662, https://doi.org/10.2151/jmsj.85.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T., K. Tsuboki, Y. Schusse, and H. Uyeda, 2014: An intensification process of a winter broad cloud band on a flank of the mountain region along the Japan-Sea coast. J. Meteor. Soc. Japan, 92, 7193, https://doi.org/10.2151/jmsj.2014-105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtake, H., M. Kawashima, and Y. Fujiyoshi, 2009: The formation mechanism of a thick cloud band over the northern part of the Sea of Japan during cold air outbreaks. J. Meteor. Soc. Japan, 87, 289306, https://doi.org/10.2151/jmsj.87.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panziera, L., and U. Germann, 2010: The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. Quart. J. Roy. Meteor. Soc., 136, 222238, https://doi.org/10.1002/qj.544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purnell, D. J., and D. J. Kirshbaum, 2018: Synoptic control over orographic precipitation distributions during the Olympics Mountains Experiment (OLYMPEX). Mon. Wea. Rev., 146, 10231044, https://doi.org/10.1175/MWR-D-17-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow? The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, https://doi.org/10.1175/2007JAS2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, https://doi.org/10.1002/qj.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, https://doi.org/10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. D., 2009: The relationships between snowfall catch efficiency and wind speed for the Geonor T-200B precipitation gauge utilizing various wind shield configurations. Proc. 77th Western Snow Conf., Canmore, AB, Canada, Western Snow Conference, 115–121.

  • Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 38893896, https://doi.org/10.1175/1520-0469(1988)045<3889:LTOSFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., R. Hamilton, J. Keeler, and R. E. Orville, 2009: Lake-effect thunderstorms in the lower Great Lakes. J. Appl. Meteor. Climatol., 48, 889902, https://doi.org/10.1175/2008JAMC1935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., and J. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673686, https://doi.org/10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., 1995: A statistical study of the snowfall distribution on the Japan Sea side of Hokkaido and its relation to synoptic-scale and meso-scale environments. J. Meteor. Soc. Japan, 73, 697715, https://doi.org/10.2151/jmsj1965.73.3_697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takada, S., 2003: Influence of Sado Island during winter monsoon synoptic condition (in Japanese). Autumn 2003 Meeting of the Meteorological Society of Japan, Sendai, Japan, Meteorological Society of Japan, C111, http://www.bosai.go.jp/seppyo/kenkyu_naiyou/conf_ws/kouws200403/Takada_KousetsuWS20040308.pdf.

  • Tsuchiya, K., and T. Fujita, 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon. J. Meteor. Soc. Japan, 45, 232250, https://doi.org/10.2151/jmsj1965.45.3_232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., 2001: WSR-88D performance in northern Utah during the winter of 1998–1999. Part I: Adjustments to precipitation estimates. NOAA/Western Regional Tech. Attachment 01-02, NOAA/NWS, 8 pp.

  • Veals, P. G., W. J. Steenburgh, and L. Campbell, 2018: Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Mon. Wea. Rev., 146, 17451762, https://doi.org/10.1175/MWR-D-17-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villani, J. P., M. L. Jurewicz, and K. Reinhold, 2017: Forecasting the inland extent of lake-effect snow bands downwind of Lake Ontario. J. Operational Meteor., 5, 5370, https://doi.org/10.15191/nwajom.2017.0505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, https://doi.org/10.1175/JCLI-D-12-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S. I., and H. Niino, 2014: Genesis and development mechanisms of a polar mesocyclone over the Japan Sea. Mon. Wea. Rev., 142, 22482270, https://doi.org/10.1175/MWR-D-13-00226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, T. K., W. J. Steenburgh, and G. G. Mace, 2019: Characteristics of sea-effect clouds and precipitation over the Sea of Japan region as observed by A-Train satellites. J. Geophys. Res. Atmos., 124, 13221335, https://doi.org/10.1029/2018JD029586.

    • Search Google Scholar
    • Export Citation
  • Yagi, M., and R. Uchiyama, 1983: Snow clouds bypassing the Noto Peninsula and Sado Island and flow joining together—Relating to the heavy snow of the Joetsu distric (in Japanese). Tenki, 30, 291294.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., M. Murakami, H. Mizuno, M. Maki, S. Nakai, and K. Iwanami, 2010: Kinematic and thermodynamical structures of longitudinal-mode snow bands over the Sea of Japan during cold-air outbreaks. Part I: Snow bands in large vertical shear environment in the band-transverse direction. J. Meteor. Soc. Japan, 88, 673718, https://doi.org/10.2151/jmsj.2010-404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, S., O. Abe, S. Nakai, and A. Sato, 2011: Recent fluctuations of meteorological and snow conditions in Japanese mountains. Ann. Glaciol., 52, 209215, https://doi.org/10.3189/172756411797252266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, S. I. Watanabe, K. Hodges, M. Zahn, T. Spengler, and I.A. Gurvich, 2016: Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis. J. Climate, 29, 419437, https://doi.org/10.1175/JCLI-D-15-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, K., H. Ohno, Y. Kominami, S. Inoue, and T. Kawakata, 2003: Performance of Japanese precipitation gauges in winter (in Japanese with English abstract and captions). Seppyo, 65, 303316.

    • Search Google Scholar
    • Export Citation
  • Yoshihara, H., M. Kawashima, K. Arai, J. Inoue, and Y. Fujiyoshi, 2004: Doppler radar study on the successive development of snowbands at a convergence line near the coastal region of the Hokuriku District. J. Meteor. Soc. Japan, 82, 10571079, https://doi.org/10.2151/jmsj.2004.1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. A. Stark, J. A. Crouch, M. J. Payne, and B. A. Colle, 2011: The impact of varying environmental conditions on the spatial and temporal patterns of orographic precipitation over the Pacific Northwest near Portland, Oregon. J. Hydrometeor., 12, 329351, https://doi.org/10.1175/2010JHM1239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2363 500 37
PDF Downloads 1072 244 35