• Ackerman, A. S., and et al. , 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 2005: An integrated turbulence scheme for boundary layers with shallow cumulus applied to pollutant transport. J. Appl. Meteor., 44, 14361452, https://doi.org/10.1175/JAM2284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., J. Olson, J. Kenyon, W. I. Gustafson, S. Endo, K. Suselj, and D. D. Turner, 2018: Shallow cumulus in WRF parameterizations evaluated against LASSO large-eddy simulations. Mon. Wea. Rev., 146, 43034322, https://doi.org/10.1175/MWR-D-18-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhattacharya, R., S. Bordoni, K. Suselj, and J. Teixeira, 2018: Parameterization interactions in global aquaplanet simulations. J. Adv. Model. Earth Syst., 10, 403420, https://doi.org/10.1002/2017MS000991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195211, https://doi.org/10.1002/jame.20018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., K. Suselj, and F. Brient, 2017: On the dependence of cloud feedbacks on physical parameterizations in WRF aquaplanet simulations. Geophys. Res. Lett., 44, 10 76210 771, https://doi.org/10.1002/2017GL074820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheinet, S., and J. Teixeira, 2003: A simple formulation for the eddy-diffusivity parameterization of cloud-topped boundary layers. Geophys. Res. Lett., 30, 1930, https://doi.org/10.1029/2003GL017377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., D. D. Lucas, J. Tannahill, X. Garaizar, and R. Klein, 2013: Efficient screening of climate model sensitivity to a large number of perturbed input parameters. J. Adv. Model. Earth Syst., 5, 598610, https://doi.org/10.1002/jame.20040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1976: Clear and cloud-capped mixed layers, their numerical simulation, structure and growth and parameterisation. Seminar on the Treatment of the Boundary Layer in Numerical Weather Prediction, ECMWF, 51 pp.

  • De Roode, S. R., A. P. Siebesma, H. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, https://doi.org/10.1175/MWR-D-11-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and et al. , 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779788, https://doi.org/10.1007/s00382-007-0322-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, S. Cardoso, J. Teixeira, and S. Paradise, 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, https://doi.org/10.1175/2010JAMC2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M., H. T. Thrastarson, K. Suselj, and J. Teixeira, 2019: Towards unifying the planetary boundary layer and shallow convection in CAM5 with the eddy-diffusivity/mass-flux approach. Atmosphere, 10, 484, https://doi.org/10.3390/atmos10090484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals. J. Geophys. Res. Atmos., 119, 89628979, https://doi.org/10.1002/2014JD021568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J. S., M. D. Lebsock, G. L. Stephens, and K. Suzuki, 2016: Improved retrieval of cloud liquid water from CloudSat and MODIS. J. Appl. Meteor. Climatol., 55, 18311844, https://doi.org/10.1175/JAMC-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z. J., J. Jeyaratnam, S. Iwasaki, H. Takahashi, and R. Anderson, 2014: Convective vertical velocity and cloud internal vertical structure: An A-Train perspective. Geophys. Res. Lett., 41, 723729, https://doi.org/10.1002/2013GL058922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, https://doi.org/10.1002/2013JD021374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 551 pp.

    • Crossref
    • Export Citation
  • Morales, A., D. J. Posselt, H. Morrison, and F. He, 2019: Assessing the influence of microphysical and environmental parameter perturbations on Orographic precipitation. J. Atmos. Sci., 76, 13731395, https://doi.org/10.1175/JAS-D-18-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, M. D., 1991: Factorial sampling plans for preliminary computational experiments. Technometrics, 33, 161174, https://doi.org/10.1080/00401706.1991.10484804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASEM, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 716 pp., https://doi.org/10.17226/24938.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., 2015: Exploring bin-macrophysics models for moist convective transport and clouds. J. Adv. Model. Earth Syst., 7, 20792104, https://doi.org/10.1002/2015MS000502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Suselj, 2019: A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW. NOAA Tech. Memo. OAR GSD-61, 37 pp., https://doi.org/10.25923/n9wm-be49.

    • Crossref
    • Export Citation
  • Oueslati, B., and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 29312946, https://doi.org/10.1175/JCLI-D-12-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., 2016: A Bayesian examination of deep convective squall-line sensitivity to changes in cloud microphysical parameters. J. Atmos. Sci., 73, 637665, https://doi.org/10.1175/JAS-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., F. He, J. Bukowki, and J. S. Reid, 2019: On the relative sensitivity of a tropical deep convective storm to changes in environment and cloud microphysical parameters. J. Atmos. Sci., 76, 11631185, https://doi.org/10.1175/JAS-D-18-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., K. Xu, R. J. C. Somerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9, 16831697, https://doi.org/10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, C., and F. Hourdin, 2008: A thermal plume model for the convective boundary layer: Representation of cumulus clouds. J. Atmos. Sci., 65, 407425, https://doi.org/10.1175/2007JAS2256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakradzija, M., A. Seifert, and A. Dipankar, 2016: A stochastic scale-aware parameterization of shallow cumulus convection across the convective gray zone. J. Adv. Model. Earth Syst., 8, 786812, https://doi.org/10.1002/2016MS000634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, C. E., 1948: A mathematical theory of communication. Bell Syst. Tech. J., 27, 623656, https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and et al. , 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., K. Suselj, M. Lebsock, and J. Teixeira, 2019: A novel framework for evaluating and improving parameterized subtropical marine boundary layer cloudiness. Mon. Wea. Rev., 147, 32413260, https://doi.org/10.1175/MWR-D-18-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, https://doi.org/10.1175/2006JAS2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and G. Matheou, 2012: Eddy diffusivity/mass flux and shallow cumulus boundary layer: An updraft PDF multiple mass flux scheme. J. Atmos. Sci., 69, 15131533, https://doi.org/10.1175/JAS-D-11-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, https://doi.org/10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., T. F. Hogan, and J. Teixeira, 2014: Implementation of a stochastic eddy-diffusivity/mass-flux parameterization into the navy global environmental model. Wea. Forecasting, 29, 13741390, https://doi.org/10.1175/WAF-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., M. J. Kurowski, and J. Teixeira, 2019a: A unified eddy-diffusivity/mass-flux approach for modeling atmospheric convection. J. Atmos. Sci., 76, 25052537, https://doi.org/10.1175/JAS-D-18-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., M. J. Kurowski, and J. Teixeira, 2019b: On the factors controlling the development of shallow convection in eddy-diffusivity/mass-flux models. J. Atmos. Sci., 76, 433456, https://doi.org/10.1175/JAS-D-18-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., 1999: Simulation of fog with the ECMWF prognostic cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 529552, https://doi.org/10.1002/qj.49712555409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and S. Cheinet, 2004: A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection. Bound.-Layer Meteor., 110, 435453, https://doi.org/10.1023/B:BOUN.0000007230.96303.0d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and et al. , 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, https://doi.org/10.1175/2011JCLI3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., and et al. , 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, 124, https://doi.org/10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585, https://doi.org/10.1175/MWR3308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2012: Using a multiphysics ensemble for exploring diversity in cloud-shortwave feedback in GCMs. J. Climate, 25, 54165431, https://doi.org/10.1175/JCLI-D-11-00564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wu, E., H. Yang, J. Kleissl, K. Suselj, M. J. Kurowski, and J. Teixeira, 2020: On the parameterization of convective downdrafts for marine stratocumulus clouds. Mon. Wea. Rev., 148, 19311950, https://doi.org/10.1175/MWR-D-19-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 100 100 12
Full Text Views 34 34 7
PDF Downloads 37 37 7

A New Methodology for Observation-Based Parameterization Development

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

We develop a methodology for identification of candidate observables that best constrain the parameterization of physical processes in numerical models. This methodology consists of three steps: (i) identifying processes that significantly impact model results, (ii) identifying observables that best constrain the influential processes, and (iii) investigating the sensitivity of the model results to the measurement error and vertical resolution of the constraining observables. This new methodology is applied to the Jet Propulsion Laboratory stochastic multiplume Eddy-Diffusivity/Mass-Flux (JPL-EDMF) model for two case studies representing nonprecipitating marine stratocumulus and marine shallow convection. The uncertainty of physical processes is characterized with uncertainty of model parameters. We find that the most uncertain processes in the JPL-EDMF model are related to the representation of lateral entrainment for convective plumes and parameterization of mixing length scale for the eddy-diffusivity part of the model. The results show a strong interaction between these uncertain processes. Measurements of the water vapor profile for shallow convection and of the cloud fraction profile for the stratocumulus case are among those measurements that best constrain the uncertain JPL-EDMF processes. The interdependence of the required vertical resolution and error characteristics of the observational system are shown. If the observations are associated with larger error, their vertical resolution has to be finer and vice versa. We suggest that the methodology and results presented here provide an objective basis for defining requirements for future observing systems such as future satellite missions to observe clouds and the planetary boundary layer.

Corresponding author: Kay Suselj, kay.suselj@jpl.nasa.gov

Abstract

We develop a methodology for identification of candidate observables that best constrain the parameterization of physical processes in numerical models. This methodology consists of three steps: (i) identifying processes that significantly impact model results, (ii) identifying observables that best constrain the influential processes, and (iii) investigating the sensitivity of the model results to the measurement error and vertical resolution of the constraining observables. This new methodology is applied to the Jet Propulsion Laboratory stochastic multiplume Eddy-Diffusivity/Mass-Flux (JPL-EDMF) model for two case studies representing nonprecipitating marine stratocumulus and marine shallow convection. The uncertainty of physical processes is characterized with uncertainty of model parameters. We find that the most uncertain processes in the JPL-EDMF model are related to the representation of lateral entrainment for convective plumes and parameterization of mixing length scale for the eddy-diffusivity part of the model. The results show a strong interaction between these uncertain processes. Measurements of the water vapor profile for shallow convection and of the cloud fraction profile for the stratocumulus case are among those measurements that best constrain the uncertain JPL-EDMF processes. The interdependence of the required vertical resolution and error characteristics of the observational system are shown. If the observations are associated with larger error, their vertical resolution has to be finer and vice versa. We suggest that the methodology and results presented here provide an objective basis for defining requirements for future observing systems such as future satellite missions to observe clouds and the planetary boundary layer.

Corresponding author: Kay Suselj, kay.suselj@jpl.nasa.gov
Save