Assessing Predictive Potential Associated with the MJO during the Boreal Winter

Arun Kumar Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
,
Jieshun Zhu Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Jieshun Zhu in
Current site
Google Scholar
PubMed
Close
, and
Wanqiu Wang Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the question of potential predictability in meteorological variables associated with skillful prediction of the Madden–Julian oscillation (MJO) during boreal winter is analyzed. The analysis is motivated by the fact that dynamical prediction systems are now capable of predicting MJO up to 30 days or earlier (measured in terms of anomaly correlation for RMM indices). Translating recent gains in MJO prediction skill and relating them back to potential for predicting meteorological variables—for example, precipitation and surface temperature—is not straightforward because of a chain of steps that go into the computation and evaluation of RMM indices. This paper assesses potential predictability in meteorological variables that could be attributed to skillful prediction of the MJO. The analysis is based on the observational data alone and assesses the upper limit of MJO-associated predictability that could be achieved.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jieshun Zhu, jieshun.zhu@noaa.gov

Abstract

In this paper, the question of potential predictability in meteorological variables associated with skillful prediction of the Madden–Julian oscillation (MJO) during boreal winter is analyzed. The analysis is motivated by the fact that dynamical prediction systems are now capable of predicting MJO up to 30 days or earlier (measured in terms of anomaly correlation for RMM indices). Translating recent gains in MJO prediction skill and relating them back to potential for predicting meteorological variables—for example, precipitation and surface temperature—is not straightforward because of a chain of steps that go into the computation and evaluation of RMM indices. This paper assesses potential predictability in meteorological variables that could be attributed to skillful prediction of the MJO. The analysis is based on the observational data alone and assesses the upper limit of MJO-associated predictability that could be achieved.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jieshun Zhu, jieshun.zhu@noaa.gov
Save
  • Ge, X., W. Wang, A. Kumar, and Y. Zhang, 2017: Importance of the vertical resolution in simulating SST diurnal and intraseasonal variability in an oceanic general circulation model. J. Climate, 30, 39633978, https://doi.org/10.1175/JCLI-D-16-0689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29, 2338, https://doi.org/10.1175/WAF-D-13-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, https://doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2000: Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull. Amer. Meteor. Soc., 81, 255264, https://doi.org/10.1175/1520-0477(2000)081<0255:AOACMO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictability, probabilistic verifications, and ensemble size. J. Climate, 14, 16711676, https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, 2012: Intraseasonal Variability of the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.

    • Crossref
    • Export Citation
  • Lavender, S. L., and A. J. Matthews, 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 40974116, https://doi.org/10.1175/2009JCLI2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262, https://doi.org/10.1175/2009MWR2831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, https://doi.org/10.1175/JCLI3735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., X. Zhang, H. H. Hendon, and M. C. Wheeler, 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702, https://doi.org/10.1029/2006GL026786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, https://doi.org/10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2016: Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. The National Academies Press, 350 pp., https://doi.org/10.17226/21873.

    • Crossref
    • Export Citation
  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. The National Academies Press, Washington, DC, 192 pp.

  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, https://doi.org/10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357, https://doi.org/10.1007/BF00231106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, H. C. S., 1951: A frequency distribution for precipitation. Bull. Amer. Meteor. Soc., 32, 397.

  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974210, https://doi.org/10.1175/MWR-D-12-00327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2017: Madden-Julian Oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, A. Kumar, and Y. Xue, 2011: How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophys. Res. Lett., 38, L13705, https://doi.org/10.1029/2011GL047684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian Oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471, https://doi.org/10.1007/s00382-011-1001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., W. Wang, and A. Kumar, 2017: Simulations of MJO propagation across the Maritime Continent: Impacts of SST feedback. J. Climate, 30, 16891704, https://doi.org/10.1175/JCLI-D-16-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 203 0 0
Full Text Views 8130 5722 110
PDF Downloads 297 60 5