• Alspach, D., and H. Sorenson, 1972: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Contrib., 17, 439448, https://doi.org/10.1109/TAC.1972.1100034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., and et al. , 2018: Satellite cloud and precipitation assimilation at operational NWP centres. Quart. J. Roy. Meteor. Soc., 137, 19341951, https://doi.org/10.1002/QJ.905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, https://doi.org/10.1029/2002JD002900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, C. P., 2018: Assimilation of radiance observations from geostationary satellites: First year report. ECMWF Rep. 47, ECMWF, 51 pp., https://www.ecmwf.int/node/18551.

  • Chan, M., F. Zhang, X. Chen, and L. R. Leung, 2020: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 32033224, https://doi.org/10.1175/MWR-D-19-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019: Relative roles of preconditioning moistening and global circumnavigating mode on the MJO convective initiation during DYNAMO. Geophys. Res. Lett., 46, 10791087, https://doi.org/10.1029/2018GL080987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, L. R. Leung, and F. Zhang, 2018a: Multiscale atmospheric overturning of the Indian summer monsoon as seen through isentropic analysis. J. Atmos. Sci., 75, 30113030, https://doi.org/10.1175/JAS-D-18-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018b: Atmospheric overturning across multiple scales of an MJO event during the CINDY/DYNAMO campaign. J. Atmos. Sci., 75, 381399, https://doi.org/10.1175/JAS-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018c: Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution. Atmos. Chem. Phys., 18, 10031022, https://doi.org/10.5194/acp-18-1003-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, M. J. Suarez, Ed., Vol. 15, NASA/TM-1999-104606, NASA, 51 pp., https://ntrs.nasa.gov/search.jsp?R=19990060930.

  • Dovera, L., and E. Della Rossa, 2011: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci., 15, 307323, https://doi.org/10.1007/s10596-010-9205-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., P. Bauer, and J. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 37853798, https://doi.org/10.1175/2006JAS2044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, S. J., 2017: Data Assimilation for the Geosciences: From Theory to Application. Elsevier, 957 pp.

  • Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 20242037, https://doi.org/10.1002/qj.830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., S. Migliorini, and M. Matricardi, 2019: All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmos. Meas. Tech., 12, 49034929, https://doi.org/10.5194/amt-12-4903-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., M. Weissmann, and Á. Periáñez, 2016: Error model for the assimilation of cloud-affected infrared satellite observations in an ensemble data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 17971808, https://doi.org/10.1002/qj.2776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, T., and et al. , 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213229, https://doi.org/10.1175/MWR-D-16-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational (Special Issue: Data assimilation in Meteology and Oceanography: Theory and practice). J. Meteor. Soc. Japan, 75, 181189, https://doi.org/10.2151/jmsj1965.75.1B_181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köpken, C., G. Kelly, and J.-N. Thépaut, 2004: Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecasts impact. Quart. J. Roy. Meteor. Soc., 130, 22772292, https://doi.org/10.1256/qj.02.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolla, T., and P. F. J. Lermusiaux, 2017a: A Gaussian mixture model smoother for continuous nonlinear stochastic dynamical systems: Applications. Mon. Wea. Rev., 145, 27632790, https://doi.org/10.1175/MWR-D-16-0065.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolla, T., and P. F. J. Lermusiaux, 2017b: A Gaussian mixture model smoother for continuous nonlinear stochastic dynamical systems: Theory and scheme. Mon. Wea. Rev., 145, 27432761, https://doi.org/10.1175/MWR-D-16-0064.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 2006: Predictability—A problem partly solved. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 40–58.

    • Crossref
    • Export Citation
  • Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 10631081, https://doi.org/10.1175/MWR-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2019: An adaptive background error inflation method for assimilating all-sky radiances. Quart. J. Roy. Meteor. Soc., 145, 805823, https://doi.org/10.1002/qj.3466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munro, R., C. Köpken, G. Kelly, J.-N. Thépaut, and R. Saunders, 2004: Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Data quality monitoring, bias correction and single-cycle experiments. Quart. J. Roy. Meteor. Soc., 130, 22932313, https://doi.org/10.1256/qj.02.229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, https://doi.org/10.1029/2009JD013759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and R. Potthast, 2019: Assimilation of all-sky SEVIRI infrared brightness temperatures in a regional-scale ensemble data assimilation system. Mon. Wea. Rev., 147, 44814509, https://doi.org/10.1175/MWR-D-19-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 5976, https://doi.org/10.1175/MWR-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. E., and C. K. I. Williams, Eds., 2005: Gaussian identities. Gaussian Processes for Machine Learning, The MIT Press, 200–201.

    • Crossref
    • Export Citation
  • Sapsis, T. P., and P. F. J. Lermusiaux, 2009: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D, 238, 23472360, https://doi.org/10.1016/j.physd.2009.09.017.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T. P., and P. F. J. Lermusiaux, 2012: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D, 241, 6076, https://doi.org/10.1016/j.physd.2011.10.001.

    • Search Google Scholar
    • Export Citation
  • Sawada, Y., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every-10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res. Atmos., 124, 25462561, https://doi.org/10.1029/2018JD029643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sondergaard, T., and P. F. J. Lermusiaux, 2013a: Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations. Part I: Theory and scheme. Mon. Wea. Rev., 141, 17371760, https://doi.org/10.1175/MWR-D-11-00295.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sondergaard, T., and P. F. J. Lermusiaux, 2013b: Data assimilation with Gaussian mixture models using the dynamically orthogonal field equations. Part II: Applications. Mon. Wea. Rev., 141, 17611785, https://doi.org/10.1175/MWR-D-11-00296.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueckermann, M. P., P. F. J. Lermusiaux, and T. P. Sapsis, 2013: Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows. J. Comput. Phys., 233, 272294, https://doi.org/10.1016/j.jcp.2012.08.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 19911999, https://doi.org/10.1002/qj.699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetra-Carvalho, S., P. J. van Leeuwen, L. Nerger, A. Barth, M. U. Altaf, P. Brasseur, P. Kirchgessner, and J. M. Beckers, 2018: State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems. Tellus, 70A, 143, https://doi.org/10.1080/16000870.2018.1445364.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vonder Haar, and A. S. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon. Wea. Rev., 132, 30663077, https://doi.org/10.1175/MWR2837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., M. Sengupta, A. S. Jones, and T. V. Haar, 2006: Cloud-resolving satellite data assimilation: Information content of IR window observations and uncertainties in estimation. J. Atmos. Sci., 63, 901919, https://doi.org/10.1175/JAS3639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C., Z. Liu, F. Gao, P. P. Childs, and J. Min, 2017: Impact of assimilating GOES imager clear-sky radiance with a Rapid Refresh assimilation system for convection-permitting forecast over Mexico. J. Geophys. Res. Atmos., 122, 54725490, https://doi.org/10.1002/2016JD026436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2017: Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves during the active phase of an MJO. J. Atmos. Sci., 74, 37713785, https://doi.org/10.1175/JAS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2018: Potentials in improving predictability of multiscale tropical weather systems evaluated through ensemble assimilation of simulated satellite-based observations. J. Atmos. Sci., 75, 16751698, https://doi.org/10.1175/JAS-D-17-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 29542963, https://doi.org/10.1002/2016GL068468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. Taraphdar, and S. Wang, 2017: The role of global circumnavigating mode in the MJO initiation and propagation.J. Geophys. Res. Atmos., 122, 5837, https://doi.org/10.1002/2016JD025665

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Minamide, R. G. Nystrom, X. Chen, S. Lin, and L. M. Harris, 2019: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R all-sky radiances. Bull. Amer. Meteor. Soc., 100, 12171222, https://doi.org/10.1175/BAMS-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 166 166 5
Full Text Views 76 76 7
PDF Downloads 92 92 8

An Efficient Bi-Gaussian Ensemble Kalman Filter for Satellite Infrared Radiance Data Assimilation

View More View Less
  • 1 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 Data Assimilation Research Section, Computational Information Systems Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The introduction of infrared water vapor channel radiance ensemble data assimilation (DA) has improved numerical weather forecasting at operational centers. Further improvements might be possible through extending ensemble data assimilation methods to better assimilate infrared satellite radiances. Here, we will illustrate that ensemble statistics under clear-sky conditions are different from cloudy conditions. This difference suggests that extending the ensemble Kalman filter (EnKF) to handle bi-Gaussian prior distributions may yield better results than the standard EnKF. In this study, we propose a computationally efficient bi-Gaussian ensemble Kalman filter (BGEnKF) to handle bi-Gaussian prior distributions. As a proof-of-concept, we used the 40-variable Lorenz 1996 model as a proxy to examine the impacts of assimilating infrared radiances with the BGEnKF and EnKF. A nonlinear observation operator that constructs radiance-like bimodal ensemble statistics was used to generate and assimilate pseudoradiances. Inflation was required for both methods to effectively assimilate pseudoradiances. In both 800- and 20-member experiments, the BGEnKF generally outperformed the EnKF. The relative performance of the BGEnKF with respect to the EnKF improved when the observation spacing and time between DA cycles (cycling interval) are increased from small values. The relative performance then degraded when observation spacing and cycling interval become sufficiently large. The BGEnKF generated less noise than the EnKF, suggesting that the BGEnKF produces more balanced analysis states than the EnKF. This proof-of-concept study motivates future investigation into using the BGEnKF to assimilate infrared observations into high-order numerical weather models.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Man-Yau Chan, mxc98@psu.edu

Abstract

The introduction of infrared water vapor channel radiance ensemble data assimilation (DA) has improved numerical weather forecasting at operational centers. Further improvements might be possible through extending ensemble data assimilation methods to better assimilate infrared satellite radiances. Here, we will illustrate that ensemble statistics under clear-sky conditions are different from cloudy conditions. This difference suggests that extending the ensemble Kalman filter (EnKF) to handle bi-Gaussian prior distributions may yield better results than the standard EnKF. In this study, we propose a computationally efficient bi-Gaussian ensemble Kalman filter (BGEnKF) to handle bi-Gaussian prior distributions. As a proof-of-concept, we used the 40-variable Lorenz 1996 model as a proxy to examine the impacts of assimilating infrared radiances with the BGEnKF and EnKF. A nonlinear observation operator that constructs radiance-like bimodal ensemble statistics was used to generate and assimilate pseudoradiances. Inflation was required for both methods to effectively assimilate pseudoradiances. In both 800- and 20-member experiments, the BGEnKF generally outperformed the EnKF. The relative performance of the BGEnKF with respect to the EnKF improved when the observation spacing and time between DA cycles (cycling interval) are increased from small values. The relative performance then degraded when observation spacing and cycling interval become sufficiently large. The BGEnKF generated less noise than the EnKF, suggesting that the BGEnKF produces more balanced analysis states than the EnKF. This proof-of-concept study motivates future investigation into using the BGEnKF to assimilate infrared observations into high-order numerical weather models.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Man-Yau Chan, mxc98@psu.edu
Save