• Alaka, G. J., X. Zhang, S. G. Gopalakrishnan, Z. Zhang, F. D. Marks, and R. Atlas, 2019: Track uncertainty in high-resolution ensemble forecasts of Hurricane Joaquin. Wea. Forecasting, 34, 18891908, https://doi.org/10.1175/WAF-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, https://doi.org/10.1175/MWR-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, R. Berg, and A. Hagen, 2019: National Hurricane Center Tropical Cyclone Report, Hurricane Michael (7–11 October 2018). Tech. Rep. AL142018, National Hurricane Center, 86 pp., https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

  • Bhatia, K. T., and D. S. Nolan, 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961980, https://doi.org/10.1175/WAF-D-12-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., J. Barkmeijer, T. N. Palmer, and D. S. Richardson, 2000: Current status and future development of the ECMWF ensemble prediction system. Meteor. Appl., 7, 163175, https://doi.org/10.1017/S1350482700001456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and C. W. Landsea, 2016: An examination of model and official National Hurricane Center tropical cyclone size forecasts. Wea. Forecasting, 31, 12931300, https://doi.org/10.1175/WAF-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 43134335, https://doi.org/10.1175/JAS-D-18-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze, and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner–core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209–220, https://doi.org/10.1175/1520-0434(1994)009<0209:aships>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, https://doi.org/10.1175/JAS-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. Rogers, 2017a: Analyzing simulated convective bursts in two Atlantic hurricanes. Part I: Burst formation and development. Mon. Wea. Rev., 145, 30733094, https://doi.org/10.1175/MWR-D-16-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. Rogers, 2017b: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., M. Bender, M. Morin, L. Harris, and S.-J. Lin, 2018a: 2017 Atlantic hurricane forecasts from a high-resolution version of the GFDL fvGFS model: Evaluation of track, intensity, and structure. Wea. Forecasting, 33, 13171337, https://doi.org/10.1175/WAF-D-18-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., L. Harris, and S.-J. Lin, 2018b: Evaluation of tropical cyclone forecasts in a high-resolution version of the multiscale GFDL fvGFS model. Wea. Forecasting, 33, 419442, https://doi.org/10.1175/WAF-D-17-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275295, https://doi.org/10.1175/JAS-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 1997: A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123, 17491762, https://doi.org/10.1002/QJ.49712354214.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, https://doi.org/10.1002/qj.49712354416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., S. E. Zick, and J. Tang, 2018: Using an object-based approach to quantify the spatial structure of reflectivity regions in Hurricane Isabel (2003). Part I: Comparisons between radar observations and model simulations. Mon. Wea. Rev., 146, 13191340, https://doi.org/10.1175/MWR-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, https://doi.org/10.1175/JAS-D-11-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and D. S. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555569, https://doi.org/10.1175/JAS-D-17-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, J. A. Sippel, S. A. Braun, and Y. Weng, 2017: Dynamics and predictability of the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 573595, https://doi.org/10.1175/JAS-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, 2018: Hurricane Michael 2018 missions. Accessed 20 December 2018, http://www.aoml.noaa.gov/hrd/Storm_pages/michael2018/mission.html.

  • Nguyen, L. T., R. F. Rogers, and P. D. Reasor, 2017: Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 44234446, https://doi.org/10.1175/MWR-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papin, P. P., L. F. Bosart, and R. D. Torn, 2017: A climatology of Central American gyres. Mon. Wea. Rev., 145, 19832000, https://doi.org/10.1175/MWR-D-16-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., J. L. Franklin, A. B. Schumacher, M. DeMaria, L. K. Shay, and E. J. Gibney, 2010: Tropical cyclone intensity change before U.S. Gulf Coast landfall. Wea. Forecasting, 25, 13801396, https://doi.org/10.1175/2010WAF2222369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, https://doi.org/10.1175/MWR-D-11-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016a: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016b: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 15551575, https://doi.org/10.1175/JAS-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, D. Hodyss, and J. H. Cossuth, 2018a: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018b: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part II: Vortex tilt. Mon. Wea. Rev., 146, 38013825, https://doi.org/10.1175/MWR-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C. Viner, and J. M. Schmidt, 2019: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow–environment interaction. Mon. Wea. Rev., 147, 29192940, https://doi.org/10.1175/MWR-D-18-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., K. Aonashi, and Y. Miyamoto, 2017: Tropical cyclone intensity change and axisymmetricity deduced from GSMaP. Mon. Wea. Rev., 145, 10031017, https://doi.org/10.1175/MWR-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, S., and L. Wu, 2009: Analysis of the influence of the Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 36, L09809, https://doi.org/10.1029/2009GL037634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2019: Evolution of dynamic and thermodynamic structures before and during rapid intensification of tropical cyclones: Sensitivity to vertical wind shear. Mon. Wea. Rev., 147, 11711191, https://doi.org/10.1175/MWR-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, https://doi.org/10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and R. F. Rogers, 2019: Effects of parameterized boundary layer structure on hurricane rapid intensification in shear. Mon. Wea. Rev., 147, 853871, https://doi.org/10.1175/MWR-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the next generation global prediction system. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, Y. Luo, J. Peng, and R. Wobus, 2017: Performance of the new NCEP global ensemble forecast system in a parallel experiment. Wea. Forecasting, 32, 19892004, https://doi.org/10.1175/WAF-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 200 200 55
Full Text Views 76 76 9
PDF Downloads 120 120 10

High-Resolution Ensemble HFV3 Forecasts of Hurricane Michael (2018): Rapid Intensification in Shear

View More View Less
  • 1 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, Florida
  • 2 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, Florida
  • 3 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, Florida
  • 4 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, Florida
  • 5 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

The FV3GFS is the current operational Global Forecast System (GFS) at the National Centers for Environmental Prediction (NCEP), which combines a finite-volume cubed sphere dynamical core (FV3) and GFS physics. In this study, FV3GFS is used to gain understanding of rapid intensification (RI) of tropical cyclones (TCs) in shear. The analysis demonstrates the importance of TC structure in a complex system like Hurricane Michael, which intensified to a category 5 hurricane over the Gulf of Mexico despite over 20 kt (10 m s−1) of vertical wind shear. Michael’s RI is examined using a global-nest FV3GFS ensemble with the nest at 3-km resolution. The ensemble shows a range of peak intensities from 77 to 159 kt (40–82 m s−1). Precipitation symmetry, vortex tilt, moisture, and other aspects of Michael’s evolution are compared through composites of stronger and weaker members. The 850–200-hPa vertical shear is 22 kt (11 m s−1) in the mean of both strong and weak members during the early stage. Tilt and moisture are two distinguishing factors between strong and weak members. The relationship between vortex tilt and humidification is complex, and other studies have shown both are important for sheared intensification. Here, it is shown that tilt reduction leads to upshear humidification and is thus a driving factor for intensification. A stronger initial vortex and early evolution of the vortex also appear to be the key to members that are able to resist the sheared environment.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew T. Hazelton, andrew.hazelton@noaa.gov

Abstract

The FV3GFS is the current operational Global Forecast System (GFS) at the National Centers for Environmental Prediction (NCEP), which combines a finite-volume cubed sphere dynamical core (FV3) and GFS physics. In this study, FV3GFS is used to gain understanding of rapid intensification (RI) of tropical cyclones (TCs) in shear. The analysis demonstrates the importance of TC structure in a complex system like Hurricane Michael, which intensified to a category 5 hurricane over the Gulf of Mexico despite over 20 kt (10 m s−1) of vertical wind shear. Michael’s RI is examined using a global-nest FV3GFS ensemble with the nest at 3-km resolution. The ensemble shows a range of peak intensities from 77 to 159 kt (40–82 m s−1). Precipitation symmetry, vortex tilt, moisture, and other aspects of Michael’s evolution are compared through composites of stronger and weaker members. The 850–200-hPa vertical shear is 22 kt (11 m s−1) in the mean of both strong and weak members during the early stage. Tilt and moisture are two distinguishing factors between strong and weak members. The relationship between vortex tilt and humidification is complex, and other studies have shown both are important for sheared intensification. Here, it is shown that tilt reduction leads to upshear humidification and is thus a driving factor for intensification. A stronger initial vortex and early evolution of the vortex also appear to be the key to members that are able to resist the sheared environment.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew T. Hazelton, andrew.hazelton@noaa.gov
Save