• Adrianto, I., T. Trafalis, and V. Lakshmanan, 2009: Support vector machines for spatiotemporal tornado prediction. Int. J. Gen. Syst., 38, 759776, https://doi.org/10.1080/03081070601068629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C., C. Wikle, Q. Zhou, and J. Royle, 2007: Population influences on tornado reports in the United States. Wea. Forecasting, 22, 571579, https://doi.org/10.1175/WAF997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A., Y. Richardson, A. Dean, R. Thompson, and B. Smith, 2016: Investigation of near-storm environments for tornado events and warnings. Wea. Forecasting, 31, 17711790, https://doi.org/10.1175/WAF-D-16-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S., and et al. , 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, T., and L. Zanna, 2019: Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst., 11, 376399, https://doi.org/10.1029/2018MS001472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K., and C. Homeyer, 2017: GridRad—Three-dimensional gridded NEXRAD WSR-88D radar data. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 11 June 2020, http://rda.ucar.edu/datasets/ds841.0/.

  • Brooks, H., and J. Correia, 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. Nelson, R. Thompson, and B. Smith, 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, https://doi.org/10.1175/WAF-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chollet, F., 2018: Deep Learning with Python. Manning, 361 pp.

  • Chollet, F., and et al. , 2020: Keras. GitHub, https://github.com/fchollet/keras.

  • Cintineo, J., M. Pavolonis, J. Sieglaff, and D. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J., and et al. , 2018: The NOAA/CIMSS ProbSevere Model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A., and et al. , 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T., and R. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. Trapp, and H. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, C. Doswell, Ed., Amer. Meteor. Soc., 167–222.

    • Crossref
    • Export Citation
  • Dieleman, S., K. Willett, and J. Dambre, 2015: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. Roy. Astron. Soc., 450, 14411459, https://doi.org/10.1093/MNRAS/STV632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C., A. Moller, and H. Brooks, 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544557, https://doi.org/10.1175/1520-0434(1999)014<0544:SSAPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J., L. Michaels, K. Scheitlin, and I. Elsner, 2013: The decreasing population bias in tornado reports across the central plains. Wea. Climate Soc., 5, 221232, https://doi.org/10.1175/WCAS-D-12-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D., A. McGovern, J. Basara, and R. Brown, 2012: Tornadic supercell environments analyzed using surface and reanalysis data: A spatiotemporal relational data-mining approach. J. Appl. Meteor. Climatol., 51, 22032217, https://doi.org/10.1175/JAMC-D-11-060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D., S. Haupt, and D. Nychka, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B., A. Clark, and S. Dembek, 2016: Forecasting tornadoes using convection-permitting ensembles. Wea. Forecasting, 31, 273295, https://doi.org/10.1175/WAF-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B., and et al. , 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil, Y., and et al. , 2019: Intelligent systems for geosciences: An essential research agenda. Commun. ACM, 62, 7684, https://doi.org/10.1145/3192335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. MIT Press, 800 pp.

  • Harrison, D., and C. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 4760, https://doi.org/10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinton, G., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2012: Improving neural networks by preventing co-adaptation of feature detectors. arXiv, 1207 (0580), https://arxiv.org/pdf/1207.0580.pdf.

  • Hoerl, A., and R. Kennard, 1970: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 5567, https://doi.org/10.1080/00401706.1970.10488634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerl, A., and R. Kennard, 1988: Ridge regression. Encyclopedia of Statistical Sciences, S. Kotz, Ed., Vol. 8, John Wiley and Sons, 129–136.

  • Homeyer, C., and K. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional gridded NEXRAD WSR-88D radar (GridRad) dataset. University of Oklahoma, 23 pp., http://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Hunter, J., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

  • Insurance Information Institute, 2019: Facts + statistics: Tornadoes and thunderstorms. III, https://www.iii.org/fact-statistic/facts-statistics-tornadoes-and-thunderstorms.

  • Ioffe, S., and C. Szegedy, 2015: Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf. on Machine Learning, Lille, France, International Machine Learning Society, http://proceedings.mlr.press/v37/ioffe15.pdf.

  • Kain, J., and et al. , 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C., and et al. , 2018: Development of a human–machine mix for forecasting severe convective events. Wea. Forecasting, 33, 715737, https://doi.org/10.1175/WAF-D-17-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingma, D., and J. Ba, 2014: Adam: A method for stochastic optimization. arXiv, 1412 (6980), https://arxiv.org/pdf/1412.6980v9.pdf.

  • Kitzmiller, D., W. McGovern, and R. Saffle, 1995: The WSR-88D severe weather potential algorithm. Wea. Forecasting, 10, 141159, https://doi.org/10.1175/1520-0434(1995)010<0141:TWSWPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krizhevsky, A., I. Sutskever, and G. Hinton, 2017: ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 8490, https://doi.org/10.1145/3065386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurth, T., and et al. , 2018: Exascale deep learning for climate analytics. Int. Conf. for High Performance Computing, Networking, Storage, and Analysis, Dallas, TX, IEEE, https://doi.org/10.1109/SC.2018.00054.

    • Crossref
    • Export Citation
  • Lagerquist, R., A. McGovern, and D. Gagne, 2019: Deep learning for spatially explicit prediction of synoptic-scale fronts. Wea. Forecasting, 34, 11371160, https://doi.org/10.1175/WAF-D-18-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, https://doi.org/10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., I. Adrianto, T. Smith, and G. Stumpf, 2005: A spatiotemporal approach to tornado prediction. IEEE Int. Joint Conf. on Neural Networks, Montreal, QC, Canada, IEEE, 1642–1647, https://doi.org/10.1109/IJCNN.2005.1556125.

    • Crossref
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The warning decision support system–integrated information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., B. Herzog, and D. Kingfield, 2015: A method for extracting postevent storm tracks. J. Appl. Meteor. Climatol., 54, 451462, https://doi.org/10.1175/JAMC-D-14-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luna-Herrera, J., G. Martinez-Cabrera, R. Parra-Maldonado, J. Enciso-Moreno, J. Torres-Lopez, F. Quesada-Pascual, R. Delgadillo-Polanco, and S. Franzblau, 2003: Use of receiver operating characteristic curves to assess the performance of a microdilution assay for determination of drug susceptibility of clinical isolates of Mycobacterium tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis., 22, 2127, https://doi.org/10.1007/s10096-002-0855-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maas, A., A. Hannun, and A. Ng, 2013: Rectifier nonlinearities improve neural network acoustic models. Proc. 30th Int. Conf. on Machine Learning, Atlanta, GA, International Machine Learning Society, 6 pp., http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf.

  • Mahalik, M., B. Smith, K. Elmore, D. Kingfield, K. Ortega, and T. Smith, 2019: Estimates of gradients in radar moments using a linear least squares derivative technique. Wea. Forecasting, 34, 415434, https://doi.org/10.1175/WAF-D-18-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2014: What we know and don’t know about tornado formation. Phys. Today, 67, 2631, https://doi.org/10.1063/PT.3.2514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and G. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617626, https://doi.org/10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., R. Lagerquist, D. Gagne, G. Jergensen, K. Elmore, C. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 21752199, https://doi.org/10.1175/BAMS-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehdi, T., N. Bashardoost, and M. Ahmadi, 2011: Kernel smoothing for ROC curve and estimation for thyroid stimulating hormone. Int. J. Public Health Res., Special Issue 2011, 239242.

    • Search Google Scholar
    • Export Citation
  • Metz, C., 1978: Basic principles of ROC analysis. Semin. Nucl. Med., 8, 283298, https://doi.org/10.1016/S0001-2998(78)80014-2.

  • Muller, M., G. Tomlinson, T. Marrie, P. Tang, A. McGeer, D. Low, A. Detsky, and W. Gold, 2005: Can routine laboratory tests discriminate between severe acute respiratory syndrome and other causes of community-acquired pneumonia? Clin. Infect. Dis., 40, 10791086, https://doi.org/10.1086/428577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Climatic Data Center, 2020: Index of /pub/data/swdi/stormevents/csvfiles. NOAA, accessed 11 June 2020, ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles.

  • Ortega, K., T. Smith, J. Zhang, C. Langston, Y. Qi, S. Stevens, and J. Tate, 2012: The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) project. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 74, https://ams.confex.com/ams/26SLS/webprogram/Handout/Paper211413/p4_74_ortegaetal_myrorss.pdf.

  • Racah, E., C. Beckham, T. Maharaj, S. Kahou, Prabhat, and C. Pal, 2017: ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Advances in Neural Information Processing Systems, Long Beach, CA, Neural Information Processing Systems, 6932, https://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf.

  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195204, https://doi.org/10.1038/s41586-019-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhyzkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silver, D., and et al. , 2016: Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484489, https://doi.org/10.1038/nature16961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P., and et al. , 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B., R. Thompson, J. Grams, C. Broyles, and H. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T., and et al. , 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2019: Tornado-resolving ensemble and probabilistic predictions of the 20 May 2013 Newcastle–Moore EF5 tornado. Mon. Wea. Rev., 147, 12151235, https://doi.org/10.1175/MWR-D-18-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, C. S. Schwartz, D. J. Gagne, and M. L. Weisman, 2016a: Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction. Wea. Forecasting, 31, 15911614, https://doi.org/10.1175/WAF-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016b: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D., and et al. , 2009: Convective-scale Warn-on-Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D., and et al. , 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm Prediction Center, 2020: Mesoscale analysis pages. NOAA, accessed 9 March 2020, http://www.spc.noaa.gov/exper/mesoanalysis/.

  • Thompson, R., B. Smith, J. Grams, A. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R., G. Stumpf, and K. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, https://doi.org/10.1175/WAF864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., K. Scott, L. Xu, and D. Clausi, 2016: Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study. IEEE Trans. Geosci. Remote Sens., 54, 45244533, https://doi.org/10.1109/TGRS.2016.2543660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D., K. Knopfmeier, T. Jones, and G. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K., P. Heinselman, C. Kuster, D. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A., C. Velden, and J. Cossuth, 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Wea. Rev., 147, 22612282, https://doi.org/10.1175/MWR-D-18-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. Dowell, L. Wicker, K. Knopfmeier, and D. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 543 543 112
Full Text Views 144 144 24
PDF Downloads 193 193 31

Deep Learning on Three-Dimensional Multiscale Data for Next-Hour Tornado Prediction

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, and University of Oklahoma, Norman, Oklahoma
  • | 2 University of Oklahoma, Norman, Oklahoma
  • | 3 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
  • | 5 Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

This paper describes the development of convolutional neural networks (CNN), a type of deep-learning method, to predict next-hour tornado occurrence. Predictors are a storm-centered radar image and a proximity sounding from the Rapid Refresh model. Radar images come from the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) and Gridded NEXRAD WSR-88D Radar dataset (GridRad), both of which are multiradar composites. We train separate CNNs on MYRORSS and GridRad data, present an experiment to optimize the CNN settings, and evaluate the chosen CNNs on independent testing data. Both models achieve an area under the receiver-operating-characteristic curve (AUC) well above 0.9, which is considered to be excellent performance. The GridRad model achieves a critical success index (CSI) of 0.31, and the MYRORSS model achieves a CSI of 0.17. The difference is due primarily to event frequency (percentage of storms that are tornadic in the next hour), which is 3.52% for GridRad but only 0.24% for MYRORSS. The best CNN predictions (true positives and negatives) occur for strongly rotating tornadic supercells and weak nontornadic cells in mesoscale convective systems, respectively. The worst predictions (false positives and negatives) occur for strongly rotating nontornadic supercells and tornadic cells in quasi-linear convective systems, respectively. The performance of our CNNs is comparable to an operational machine-learning system for severe weather prediction, which suggests that they would be useful for real-time forecasting.

Corresponding author: Ryan Lagerquist, ryan.lagerquist@ou.edu

Abstract

This paper describes the development of convolutional neural networks (CNN), a type of deep-learning method, to predict next-hour tornado occurrence. Predictors are a storm-centered radar image and a proximity sounding from the Rapid Refresh model. Radar images come from the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) and Gridded NEXRAD WSR-88D Radar dataset (GridRad), both of which are multiradar composites. We train separate CNNs on MYRORSS and GridRad data, present an experiment to optimize the CNN settings, and evaluate the chosen CNNs on independent testing data. Both models achieve an area under the receiver-operating-characteristic curve (AUC) well above 0.9, which is considered to be excellent performance. The GridRad model achieves a critical success index (CSI) of 0.31, and the MYRORSS model achieves a CSI of 0.17. The difference is due primarily to event frequency (percentage of storms that are tornadic in the next hour), which is 3.52% for GridRad but only 0.24% for MYRORSS. The best CNN predictions (true positives and negatives) occur for strongly rotating tornadic supercells and weak nontornadic cells in mesoscale convective systems, respectively. The worst predictions (false positives and negatives) occur for strongly rotating nontornadic supercells and tornadic cells in quasi-linear convective systems, respectively. The performance of our CNNs is comparable to an operational machine-learning system for severe weather prediction, which suggests that they would be useful for real-time forecasting.

Corresponding author: Ryan Lagerquist, ryan.lagerquist@ou.edu
Save