What is the Intrinsic Predictability of Tornadic Supercell Thunderstorms?

Paul M. Markowski Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 25-member ensemble of relatively high-resolution (75-m horizontal grid spacing) numerical simulations of tornadic supercell storms is used to obtain insight on their intrinsic predictability. The storm environments contain large and directionally varying wind shear, particularly in the boundary layer, large convective available potential energy, and a low lifting condensation level. Thus, the environments are extremely favorable for tornadic supercells. Small random temperature perturbations present in the initial conditions trigger turbulence within the boundary layers. The turbulent boundary layers are given 12 h to evolve to a quasi–steady state before storms are initiated via the introduction of a warm bubble. The spatially averaged environments are identical within the ensemble; only the random number seed and/or warm bubble location is varied. All of the simulated storms are long-lived supercells with intense updrafts and strong mesocyclones extending to the lowest model level. Even the storms with the weakest near-surface rotation probably can be regarded as weakly tornadic. However, despite the statistically identical environments, there is considerable divergence in the finescale details of the simulated storms. The intensities of the tornado-like vortices that develop in the simulations range from EF0 to EF3, with large differences in formation time and duration also being exhibited. The simulation differences only can be explained by differences in how the initial warm bubbles and/or storms interact with turbulent boundary layer structures. The results suggest very limited intrinsic predictability with respect to predicting the formation time, duration, and intensity of tornadoes.

Corresponding author: Paul M. Markowski, pmarkowski@psu.edu

Abstract

A 25-member ensemble of relatively high-resolution (75-m horizontal grid spacing) numerical simulations of tornadic supercell storms is used to obtain insight on their intrinsic predictability. The storm environments contain large and directionally varying wind shear, particularly in the boundary layer, large convective available potential energy, and a low lifting condensation level. Thus, the environments are extremely favorable for tornadic supercells. Small random temperature perturbations present in the initial conditions trigger turbulence within the boundary layers. The turbulent boundary layers are given 12 h to evolve to a quasi–steady state before storms are initiated via the introduction of a warm bubble. The spatially averaged environments are identical within the ensemble; only the random number seed and/or warm bubble location is varied. All of the simulated storms are long-lived supercells with intense updrafts and strong mesocyclones extending to the lowest model level. Even the storms with the weakest near-surface rotation probably can be regarded as weakly tornadic. However, despite the statistically identical environments, there is considerable divergence in the finescale details of the simulated storms. The intensities of the tornado-like vortices that develop in the simulations range from EF0 to EF3, with large differences in formation time and duration also being exhibited. The simulation differences only can be explained by differences in how the initial warm bubbles and/or storms interact with turbulent boundary layer structures. The results suggest very limited intrinsic predictability with respect to predicting the formation time, duration, and intensity of tornadoes.

Corresponding author: Paul M. Markowski, pmarkowski@psu.edu
Save
  • Anderson-Frey, A. K., and H. Brooks, 2019: Tornado fatalities: An environmental perspective. Wea. Forecasting, 34, 19992015, https://doi.org/10.1175/WAF-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2016: Investigation of near-storm environments for tornado events and warnings. Wea. Forecasting, 31, 17711790, https://doi.org/10.1175/WAF-D-16-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2017: Self-organizing maps for the investigation of tornadic near-storm environments. Wea. Forecasting, 32, 14671475, https://doi.org/10.1175/WAF-D-17-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, https://doi.org/10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and H. B. Bluestein, 2004: Hodograph variability within analytically modeled, synoptic-scale, baroclinic systems. Mon. Wea. Rev., 132, 14481461, https://doi.org/10.1175/1520-0493(2004)132<1448:HVWAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., R. P. Davies-Jones, and B. C. Johnson, 1988: Streamwise vorticity effects on supercell morphology and persistence. J. Atmos. Sci., 45, 947963, https://doi.org/10.1175/1520-0469(1988)045<0947:SVEOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia, 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and L. J. Wicker, 1993: STORMTIPE: A forecasting experiment using a three-dimensional cloud model. Wea. Forecasting, 8, 352362, https://doi.org/10.1175/1520-0434(1993)008<0352:SAFEUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., and D. J. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 19932011, https://doi.org/10.1175/JAS-D-12-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, B. A., 2014: Sensitivity of vortex production to small environmental perturbations in high-resolution supercell simulations. M.S. thesis, School of Meteorology, University of Oklahoma, 83 pp.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and J. J. Levit, 1993: The sensitivity of numerically-simulated storm evolution to initial conditions. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 431435.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Flora, M. L., C. K. Potvin, and L. J. Wicker, 2018: Practical predictability of supercells: Exploring ensemble forecast sensitivity to initial condition spread. Mon. Wea. Rev., 146, 23612379, https://doi.org/10.1175/MWR-D-17-0374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. M. Markowski, 2010: Numerical simulations of radiative cooling beneath the anvils of supercell thunderstorms. Mon. Wea. Rev., 138, 30243047, https://doi.org/10.1175/2010MWR3177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. M. Markowski, 2013: Dynamical influences of anvil shading on simulated supercell thunderstorms. Mon. Wea. Rev., 141, 28022820, https://doi.org/10.1175/MWR-D-12-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastings, R., and Y. Richardson, 2016: Long-term morphological changes in simulated supercells following mergers with nascent supercells in directionally varying shear. Mon. Wea. Rev., 144, 471499, https://doi.org/10.1175/MWR-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastings, R. M., Y. P. Richardson, P. M. Markowski, and J. Wurman, 2010: Storm mergers, Part 2: Observations of merger events from VORTEX2. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P8.16, https://ams.confex.com/ams/25SLS/webprogram/Paper176073.html.

  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, https://doi.org/10.1175/2007MWR2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klees, A., Y. Richardson, P. Markowski, J. Wurman, K. Kosiba, and C. Weiss, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., 2019: Predictability of idealized thunderstorms in buoyancy–shear space. J. Atmos. Sci., 76, 26532672, https://doi.org/10.1175/JAS-D-18-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics, and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43, 126140, https://doi.org/10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969a: Three approaches to atmospheric predictability. Bull. Amer. Meteor. Soc., 50, 345349.

  • Lorenz, E. N., 1969b: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, https://doi.org/10.1175/JAS-D-12-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and J. Harrington, 2005: A simulation of a supercell thunderstorm with emulated radiative cooling beneath the anvil. J. Atmos. Sci., 62, 26072617, https://doi.org/10.1175/JAS3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014a: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014b: What we know and don’t know about tornado formation. Phys. Today, 67, 2631, https://doi.org/10.1063/PT.3.2514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 10951104, https://doi.org/10.1175/JAS-D-16-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, and D. C. Dowell, 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126, 29592971, https://doi.org/10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev., 134, 192207, https://doi.org/10.1175/MWR3061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2016: A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part II: Mechanisms of tornadogenesis. Mon. Wea. Rev., 144, 30773098, https://doi.org/10.1175/MWR-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, https://doi.org/10.1175/JAS-D-11-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and P. M. Markowski, 2016: Modifications to the near-storm environment induced by simulated supercell thunderstorms. Mon. Wea. Rev., 144, 273293, https://doi.org/10.1175/MWR-D-15-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, and G. H. Bryan, 2015: Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon. Wea. Rev., 143, 272297, https://doi.org/10.1175/MWR-D-14-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and G. L. Mullendore, 2020: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., E. M. Murillo, M. L. Flora, and D. M. Wheatley, 2017: Sensitivity of supercell simulations to initial-condition resolution. J. Atmos. Sci., 74, 526, https://doi.org/10.1175/JAS-D-16-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson II, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, https://doi.org/10.1175/JAS-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson II, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, https://doi.org/10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1978: Environmental Aerodynamics. Ellis Horwood Ltd., 488 pp.

  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441, https://doi.org/10.1175/MWR3131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. Weiss, M. French, H. Bluestein, P. Markowski, and Y. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple in ternal rear-flank downdraft momentum surges in the 18 May 2010, Dumas, Texas supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, https://doi.org/10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2019: Tornado-resolving ensemble and probabilistic predictions of the 20 May 2013 Newcastle–Moore EF5 tornado. Mon. Wea. Rev., 147, 12151235, https://doi.org/10.1175/MWR-D-18-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. M. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, https://doi.org/10.1175/MWR3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokota, S., H. Niino, H. Seko, M. Kunii, and H. Yamauchi, 2018: Important factors for tornadogenesis as revealed by high-resolution ensemble forecasts of the Tsukuba supercell tornado of 6 May 2012 in Japan. Mon. Wea. Rev., 146, 11091132, https://doi.org/10.1175/MWR-D-17-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., A. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season rainfall event. Wea. Forecasting, 21, 149166, https://doi.org/10.1175/WAF909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, D. J. Stensrud, and Z. Meng, 2015: Practical predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma: Sensitivity to synoptic timing and topographical influence. Mon. Wea. Rev., 143, 29732997, https://doi.org/10.1175/MWR-D-14-00394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, D. J. Stensrud, and Z. Meng, 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 12731298, https://doi.org/10.1175/MWR-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 512 0 0
Full Text Views 2081 618 33
PDF Downloads 2017 588 40