Near-Surface Vortex Formation in Supercells from the Perspective of Vortex Patch Dynamics

Johannes M. L. Dahl Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Johannes M. L. Dahl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In many supercell simulations, near-ground vortex formation results from the collapse of an elongated region of enhanced vertical vorticity. In this study, this “roll-up” mechanism is analyzed by investigating the behavior of several 2D elliptic vortex patches. The problem is treated as a nonlinear initial value problem, which is better suited to describe the roll-up mechanism than the more commonly employed normal-mode analysis. Using the Bryan Cloud Model 1, it is demonstrated that the condition for vortex formation is an initial finite-amplitude nonuniformity within the vortex patch. Vortex formation results from differential self-advection due to the flow induced by the patch itself. Background straining motion may either aid or suppress vortex-patch axisymmetrization depending on the initial orientation of the patch relative to the deformation axis. It is also found that in some cases numerical dispersion may lead to nonuniformities that serve as seed for axisymmetrization, thus resulting in unphysical vortex development.

Corresponding author: Johannes Dahl, johannes.dahl@ttu.edu

Abstract

In many supercell simulations, near-ground vortex formation results from the collapse of an elongated region of enhanced vertical vorticity. In this study, this “roll-up” mechanism is analyzed by investigating the behavior of several 2D elliptic vortex patches. The problem is treated as a nonlinear initial value problem, which is better suited to describe the roll-up mechanism than the more commonly employed normal-mode analysis. Using the Bryan Cloud Model 1, it is demonstrated that the condition for vortex formation is an initial finite-amplitude nonuniformity within the vortex patch. Vortex formation results from differential self-advection due to the flow induced by the patch itself. Background straining motion may either aid or suppress vortex-patch axisymmetrization depending on the initial orientation of the patch relative to the deformation axis. It is also found that in some cases numerical dispersion may lead to nonuniformities that serve as seed for axisymmetrization, thus resulting in unphysical vortex development.

Corresponding author: Johannes Dahl, johannes.dahl@ttu.edu
Save
  • Baines, P. G., and H. Mitsudera, 1994: On the mechanism of shear flow instabilities. J. Fluid Mech., 276, 327342, https://doi.org/10.1017/S0022112094002582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 2002: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, https://doi.org/10.1175/MWR-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, S. A., 1988: Initial-value stability analysis of a liquid jet. J. Appl. Math., 48, 973991, https://doi.org/10.1137/0148057.

  • Boyer, C., and J. M. L. Dahl, 2020: The mechanisms responsible for large near-surface surface vertical vorticity within simulated supercellular and quasi-linear storms. Mon. Wea. Rev., submitted.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, K. M., 1960: Stability in inviscid plane Couette flow. Phys. Fluids, 3, 143, https://doi.org/10.1063/1.1706010.

  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, https://doi.org/10.1175/MWR-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2017: Tilting of horizontal shear vorticity and the development of updraft rotation in supercell thunderstorms. J. Atmos. Sci., 74, 29973020, https://doi.org/10.1175/JAS-D-17-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P. and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105114.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 1981: Hydrodynamic Stability. Cambridge University Press, 525 pp.

  • Farrell, B., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686, https://doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668673, https://doi.org/10.1175/1520-0469(1984)041<0668:MANMBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1987: Developing disturbances in shear. J. Atmos. Sci., 44, 21912199, https://doi.org/10.1175/1520-0469(1987)044<2191:DDIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2020: The relative importance of updraft and cold pool characteristics on supercell tornadogenesis in highly idealized simulations. J. Atmos. Sci., submitted.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., and M. C. Coniglio, 2019: Origins of vorticity in a simulated tornadic mesovortex observed during PECAN on 6 July 2015. Mon. Wea. Rev., 147, 107134, https://doi.org/10.1175/MWR-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaudet, B. J., and W. R. Cotton, 2006: Low-level mesocyclonic concentration by nonaxisymmetric transport. Part I: Supercell and mesocyclone evolution. J. Atmos. Sci., 63, 11131133, https://doi.org/10.1175/JAS3685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaudet, B. J., W. R. Cotton, and M. T. Montgomery, 2006: Low-level mesocyclonic concentration by nonaxisymmetric transport. Part II: Vorticity dynamics. J. Atmos. Sci., 63, 11341150, https://doi.org/10.1175/JAS3579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, M. E., B. J. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A., 2017: The possible role of density-current dynamics in the generation of low-level vertical vorticity in supercells. J. Atmos. Sci., 74, 31913208, https://doi.org/10.1175/JAS-D-16-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. E., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, https://doi.org/10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194, https://doi.org/10.1175/JAS3965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1988: Deducing the wind from vorticity and divergence. Mon. Wea. Rev., 116, 8693, https://doi.org/10.1175/1520-0493(1988)116<0086:DTWFVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1989: Partitioning the wind field in a limited domain. Mon. Wea. Rev., 117, 14921500, https://doi.org/10.1175/1520-0493(1989)117<1492:PTWIAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-Level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, M. Majcen, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. J. Severe Storms Meteor., 6 (3), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/75.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 39443954, https://doi.org/10.1175/MWR-D-14-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2016: A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part II: Mechanisms of tornadogenesis. Mon. Wea. Rev., 144, 30773098, https://doi.org/10.1175/MWR-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melander, M. V., J. C. McWilliams, and N. J. Zabusky, 1987: Axisymmetrization and vorticity gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137159, https://doi.org/10.1017/S0022112087001150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336, https://doi.org/10.1017/S0022112064001252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, J. C., 1984: The dynamics of a columnar vortex in an imposed strain. Phys. Fluids, 27, 23972402, https://doi.org/10.1063/1.864543.

  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, and G. H. Bryan, 2015: Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon. Wea. Rev., 143, 272297, https://doi.org/10.1175/MWR-D-14-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, P. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 27952816, https://doi.org/10.1175/MWR-D-14-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1964: An inital value problem in the theory of baroclinic instability. Tellus, 16, 1217, https://doi.org/10.3402/tellusa.v16i1.8892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1880: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc., XI, 5770.

  • Richardson, Y. P., K. K. Droegemeier, and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in shear. Mon. Wea. Rev., 135, 34293455, https://doi.org/10.1175/MWR3463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., and M. Xue, 2017: The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 74, 30553077, https://doi.org/10.1175/JAS-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., P. M. Markowski, and G. H. Bryan, 2017: “Near-ground” vertical vorticity in supercell thunderstorm models. J. Atmos. Sci., 74, 17571766, https://doi.org/10.1175/JAS-D-16-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1992: Vortex Dynamics. Cambridge University Press, 311 pp.

  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, https://doi.org/10.1175/JAS-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schielicke, L., P. Névir, and U. Ulbrich, 2016: Kinematic vorticity number—A tool for estimating vortex sizes and circulations. Tellus, 68A, 29464, https://doi.org/10.3402/tellusa.v68.29464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, T., and T. Tamura, 2020: Numerical study of the 6 May 2012 Tsukuba supercell tornado: Vorticity sources responsible for tornadogenesis. Mon. Wea. Rev., 148, 12051228, https://doi.org/10.1175/MWR-D-19-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truesdell, C., 1954: The Kinematics of Vorticity. Indiana University Press, 232 pp.

  • Weisman, M., and J. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J.-Z., H.-Y. Ma, and M.-D. Zhou, 2006: Vorticity and Vortex Dynamics. Springer, 776 pp.

All Time Past Year Past 30 Days
Abstract Views 159 0 0
Full Text Views 630 167 4
PDF Downloads 603 165 4