• American Meteorological Society, 2020: Supercell. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Supercell.

  • Atmospheric Radiation Measurement (ARM) User Facility, 2018a: Balloon-Borne Sounding System (SONDEWNPN) (updated hourly). ARM Mobile Facility (COR) Cordoba, Argentina; AMF1 (main site for CACTI) (M1),ARM Data Center, accessed 1 May 2019, https://doi.org/10.5439/1021460.

    • Crossref
    • Export Citation
  • Atmospheric Radiation Measurement (ARM) User Facility, 2018b: C-Band Scanning ARM Precipitation Radar (CSAPR2CFRHSRHI, CSAPR2CFRPPI) (updated hourly). ARM Mobile Facility (COR) Cordoba, Argentina; AMF1 (main site for CACTI) (M1),ARM Data Center, accessed 1 May 2019, https://doi.org/10.5439/1482619.

    • Crossref
    • Export Citation
  • Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58, 18891904, https://doi.org/10.1175/JAMC-D-19-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and et al. , 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190, https://doi.org/10.1256/QJ.03.180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, https://doi.org/10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., K. L. Rasmussen, and D. J. Cecil, 2019: Subtropical South American hailstorm characteristics and environments. Mon. Wea. Rev., 147, 42894304, https://doi.org/10.1175/MWR-D-19-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D., and C. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chisholm, A. J., and J. H. Renick, 1972: The kinematics of multicell and supercell Alberta hailstorms. Alberta hail studies, Research Council of Alberta Hail Studies, Rep. 72–2, 2431.

  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, https://doi.org/10.1175/2008MWR2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 42724288, https://doi.org/10.1175/2008MWR2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul Jr, and C. Cohen, 2009: Variability of updraft and downdraft characteristics in a large parameter space study of convective storms. Mon. Wea. Rev., 137, 15501561, https://doi.org/10.1175/2008MWR2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, Tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krupar, R. J., III, M. S. Mason, D. J. Smith, J. Soderholm, A. Protat, and W. S. Gunter, 2017: Dual-Doppler radar, in situ anemometric and ground damage observations of the 27 November 2014 Brisbane supercell. Preprints, 13th Americas Conf. on Wind Engineering (13ACWE), Gainesville, FL, University of Florida, XX–XX.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. Lebo, and A. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and et al. , 2020: Gargantuan hail in Argentina. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-19-0012.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, https://doi.org/10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 52012 526, https://doi.org/10.1029/2019GL084099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457478, https://doi.org/10.1016/j.atmosres.2010.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mezher, R. N., M. Doyle, and V. Barros, 2012: Climatology of hail in Argentina. Atmos. Res., 114–115, 7082, https://doi.org/10.1016/j.atmosres.2012.05.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling perspective. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-19-0190.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and et al. , 2016: RELAMPAGO Experimental Design Overview. Accessed 15 April 2020, https://www.eol.ucar.edu/field_projects/relampago.

  • Rasmussen, K. L., and R. A. Houze, 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze, 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and A. C. Saulo, 2002: Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res., 107, 4816, https://doi.org/10.1029/2001JD001315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., A. C. Saulo, M. Nicolini, and P. Satyamurty, 2003: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378, https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, B., B. Ronalds, and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 14301451, https://doi.org/10.1175/MWR-D-13-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J., H. McGowan, H. Richter, K. Walsh, T. Weckwerth, and M. Coleman, 2016: The Coastal Convective Interactions Experiment (CCIE): Understanding the role of sea breezes for hailstorm hotspots in eastern Australia. Bull. Amer. Meteor. Soc., 97, 16871698, https://doi.org/10.1175/BAMS-D-14-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, 346 pp.

  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft area. J. Atmos. Sci., 74, 41994211, https://doi.org/10.1175/JAS-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2018: Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Science Plan. DOE/ARM Tech. Rep. DOE/SC-ARM-17-004, 48 pp., https://www.arm.gov/research/campaigns/amf2018cacti.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., R. A. Brown, and D. W. Burgess, 1996: Duration and movement of mesocyclones associated with Southern Great Plains thunderstorms. Mon. Wea. Rev., 124, 97101, https://doi.org/10.1175/1520-0493(1996)124<0097:DAMOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 9597.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, https://doi.org/10.1175/JAS3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. T. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 414 414 80
Full Text Views 150 150 16
PDF Downloads 161 161 16

Multiple-Platform and Multiple-Doppler Radar Observations of a Supercell Thunderstorm in South America during RELAMPAGO

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 Center for Severe Weather Research, Boulder, Colorado
  • | 3 Pacific Northwest National Laboratory, Richland, Washington, and University of Colorado Boulder, Boulder, Colorado
  • | 4 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 5 Centro de Investigaciones del Mar y la Atmósfera, CONICET-UBA, and Departamento de Ciencias de la Atmósfera y los Océanos, UBA, UMI-IFAECI, CNRS-CONICET-UBA, Buenos Aires, Argentina
© Get Permissions
Restricted access

Abstract

On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain.

Corresponding author: Robert J. Trapp, jtrapp@illinois.edu

Abstract

On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain.

Corresponding author: Robert J. Trapp, jtrapp@illinois.edu
Save