• Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billings, J. M., and M. D. Parker, 2012: Evolution and maintenance of the 22–23 June 2003 nocturnal convection during BAMEX. Wea. Forecasting, 27, 279300, https://doi.org/10.1175/WAF-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., Z. B. Wienhoff, D. D. Turner, D. W. Reif, J. C. Snyder, K. J. Thiem, and J. B. Houser, 2017: A comparison of the finescale structures of a prefrontal wind-shift line and a strong cold front in the southern plains of the United States. Mon. Wea. Rev., 145, 33073330, https://doi.org/10.1175/MWR-D-16-0403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., 1986: Quasi-stationary convective events. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 289309, https://doi.org/10.1007/978-1-935704-20-113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chasteen, M. B., S. E. Koch, and D. B. Parsons, 2019: Multiscale processes enabling the longevity and daytime persistence of a nocturnal mesoscale convective system. Mon. Wea. Rev., 147, 733761, https://doi.org/10.1175/MWR-D-18-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, https://doi.org/10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., J. H. Merritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, https://doi.org/10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and et al. , 2004: The Bow Echo and MCV experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, M. R., and B. R. Sutherland, 2004: Intrusive gravity currents and internal gravity wave generation in stratified fluid. J. Fluid Mech., 514, 355383, https://doi.org/10.1017/S0022112004000400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, M. R., and P. Linden, 2006: Intrusive gravity currents. J. Fluid Mech., 568, 193202, https://doi.org/10.1017/S0022112006002734.

  • French, A. J., and M. D. Parker, 2008: The initiation and evolution of multiple modes of convection within a meso-alpha-scale region. Wea. Forecasting, 23, 12211252, https://doi.org/10.1175/2008WAF2222136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., R. H. Johnson, and S. N. Tulich, 2001: Some simple simulations of thunderstorm outflows. J. Atmos. Sci., 58, 504516, https://doi.org/10.1175/1520-0469(2001)058<0504:SSSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and et al. , 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, G. R. Herman, M. C. Coniglio, M. D. Parker, and C. L. Ziegler, 2019: Evolution of pre- and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 14441473, https://doi.org/10.1175/1520-0493(1988)116<1444:TROSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, https://doi.org/10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1994: On the dynamics of gravity currents in a channel. J. Fluid Mech., 269, 169198, https://doi.org/10.1017/S0022112094001527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 1996: A numerical study of the effects of ambient flow and shear on density currents. Mon. Wea. Rev., 124, 22822303, https://doi.org/10.1175/1520-0493(1996)124<2282:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2017: Shear-parallel mesoscale convective systems in a moist low-inhibition mei-yu front environment. J. Atmos. Sci., 74, 42134228, https://doi.org/10.1175/JAS-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., D. B. Weber, and C. A. Doswell III, 2008: Parameterized mesoscale forcing mechanisms for initiating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 24082421, https://doi.org/10.1175/2007MWR2133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveless, D. M., T. J. Wagner, D. D. Turner, S. A. Ackerman, and W. F. Feltz, 2019: A composite perspective on bore passages during the PECAN campaign. Mon. Wea. Rev., 147, 13951413, https://doi.org/10.1175/MWR-D-18-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., K. A. Browning, J. C. Nicol, D. J. Parker, E. G. Norton, A. M. Blyth, U. Corsmeier, and F. M. Perry, 2010: Multi-sensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Quart. J. Roy. Meteor. Soc., 136, 17881812, https://doi.org/10.1002/qj.669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850, https://doi.org/10.1002/qj.49711850703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., B. S. Borchardt, R. L. Miller, and C. L. Ziegler, 2020: Simulated evolution and severe wind production by the 25–26 June 2015 nocturnal MCS from PECAN. Mon. Wea. Rev., 148, 183209, https://doi.org/10.1175/MWR-D-19-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2014: Objective categorization of heavy-rain-producing MCS synoptic types by rotated principal component analysis. Mon. Wea. Rev., 142, 17161737, https://doi.org/10.1175/MWR-D-13-00295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015a: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10581085, https://doi.org/10.1175/MWR-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2015b: The simulated structure and evolution of a quasi-idealized warm season convective system with a training convective line. J. Atmos. Sci., 72, 19872010, https://doi.org/10.1175/JAS-D-14-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, https://doi.org/10.1175/JAS-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Physick, W., W. Downey, A. Troup, B. Ryan, and P. Meighen, 1985: Mesoscale observations of a prefrontal squall line. Mon. Wea. Rev., 113, 19581969, https://doi.org/10.1175/1520-0493(1985)113<1958:MOOAPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and R. Rotunno, 1989: Response of a stably stratified flow to cooling. J. Atmos. Sci., 46, 28302837, https://doi.org/10.1175/1520-0469(1989)046<2830:ROASSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 12051222, https://doi.org/10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, https://doi.org/10.1175/2008JAS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, https://doi.org/10.1175/JAS-D-14-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2017: Heavy rainfall and flash flooding. Natural Hazard Science, Oxford Research Encyclopedias, https://doi.org/10.1093/ACREFORE/9780199389407.013.132.

    • Crossref
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, https://doi.org/10.1175/2008MWR2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, https://doi.org/10.1175/2008WAF2222173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., and J. R. Munroe, 2014: Intrusions in stratified fluids. University of Alberta, Edmonton, Alberta, Canada, 6 pp., http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.9065&rep=rep1&type=pdf.

  • Sutherland, B. R., P. J. Kyba, and M. R. Flynn, 2004: Intrusive gravity currents in two-layer fluids. J. Fluid Mech., 514, 327353, https://doi.org/10.1017/S0022112004000394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., S. D. Kehler, and J. Hanesiak, 2020: Observations and simulation of elevated nocturnal convection initiation on 24 June 2015 during PECAN. Mon. Wea. Rev., 148, 613635, https://doi.org/10.1175/MWR-D-19-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ungarish, M., 2005: Intrusive gravity currents in a stratified ambient: Shallow-water theory and numerical results. J. Fluid Mech., 535, 287323, https://doi.org/10.1017/S0022112005004854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ungarish, M., 2009: An Introduction to Gravity Currents and Intrusions. Chapman and Hall/CRC, 489 pp.

    • Crossref
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1992: Density currents in shear flows—A two-fluid model. J. Atmos. Sci., 49, 511524, https://doi.org/10.1175/1520-0469(1992)049<0511:DCISFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Q. Xu, and K. K. Droegemeier, 1997: A theoretical and numerical study of density currents in nonconstant shear flows. J. Atmos. Sci., 54, 19982019, https://doi.org/10.1175/1520-0469(1997)054<1998:ATANSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., M. C. Coniglio, M. D. Parker, and R. S. Schumacher, 2016: CSU/NCSU/NSSL MGAUS radiosonde data, version 3.0. UCAR/NCAR–Earth Observing Laboratory, accessed 22 September 2016, https://doi.org/10.5065/D6W66HXN.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 243 243 13
Full Text Views 64 64 8
PDF Downloads 84 84 9

Analysis of Back-Building Convection in Simulations with a Strong Low-Level Stable Layer

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, and ARC Centre of Excellence for Climate Extremes and School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In a mesoscale convective system (MCS), convection that redevelops over (i.e., back-builds), and/or repeatedly passes over (i.e., trains) a region for an extended period of time can contribute to extreme rainfall and flash flooding. Past studies have indicated that both mesoscale ascent and lifting of the inflow layer by a cold pool or bore are important when this back-building/training convection is displaced from the leading line [sometimes called rearward off-boundary development (ROD)]. However, Plains Elevated Convection At Night (PECAN) field campaign observations suggest that the stability of the nocturnal boundary layer is highly variable and some MCSs with ROD have only a weak surface cold pool. Numerical simulations presented in this study suggest that in an environment with strong boundary layer stability, ROD can be supported by mechanisms other than those mentioned above. Simulations were initialized using a sounding from ahead of a PECAN MCS with a strong stable layer and ROD, and the three-dimensional simulation produced an MCS similar to that observed despite the homogeneous initial conditions. Some of the findings presented herein challenge existing understanding of nocturnal MCSs, and especially how downdrafts interact with a stable boundary layer. Notably, downdrafts can reach the surface, and different regions of the MCS may have different propagation mechanisms and different relevant inflow layers. Unlike previous studies of ROD, parcel lifting may be supported by an intrusion (an elevated layer of downdraft air) modified by the three-dimensional vertical wind shear.

Corresponding author: Stacey M. Hitchcock, stacey.hitchcock@unimelb.edu.au

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

In a mesoscale convective system (MCS), convection that redevelops over (i.e., back-builds), and/or repeatedly passes over (i.e., trains) a region for an extended period of time can contribute to extreme rainfall and flash flooding. Past studies have indicated that both mesoscale ascent and lifting of the inflow layer by a cold pool or bore are important when this back-building/training convection is displaced from the leading line [sometimes called rearward off-boundary development (ROD)]. However, Plains Elevated Convection At Night (PECAN) field campaign observations suggest that the stability of the nocturnal boundary layer is highly variable and some MCSs with ROD have only a weak surface cold pool. Numerical simulations presented in this study suggest that in an environment with strong boundary layer stability, ROD can be supported by mechanisms other than those mentioned above. Simulations were initialized using a sounding from ahead of a PECAN MCS with a strong stable layer and ROD, and the three-dimensional simulation produced an MCS similar to that observed despite the homogeneous initial conditions. Some of the findings presented herein challenge existing understanding of nocturnal MCSs, and especially how downdrafts interact with a stable boundary layer. Notably, downdrafts can reach the surface, and different regions of the MCS may have different propagation mechanisms and different relevant inflow layers. Unlike previous studies of ROD, parcel lifting may be supported by an intrusion (an elevated layer of downdraft air) modified by the three-dimensional vertical wind shear.

Corresponding author: Stacey M. Hitchcock, stacey.hitchcock@unimelb.edu.au

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save