• Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and A. C. Bemis, 1950: A quantitative study of the “bright band” in radar precipitation echoes. J. Meteor., 7, 145151, https://doi.org/10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, https://doi.org/10.1175/JAMC-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, R. A., 1984: Distribution of particle types above 6.0 km in two Atlantic hurricanes. 16th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 537–541.

  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802822, https://doi.org/10.1175/1520-0469(1986)043<0802:OOTDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and C. R. Homeyer, 2017: GridRad—Three-dimensional gridded NEXRAD WSR-88D radar data. The National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 1 November 2019, https://doi.org/10.5065/D6NK3CR7.

    • Crossref
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brauer, N. S., J. B. Basara, C. R. Homeyer, G. M. McFarquhar, and P. E. Kirstetter, 2020: Quantifying precipitation efficiency and drivers of excessive precipitation in post-landfall Hurricane Harvey. J. Hydrometeor., 21, 433452, https://doi.org/10.1175/JHM-D-19-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, https://doi.org/10.1175/MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. 1st ed. Cambridge University Press, 636 pp.

  • Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910917, https://doi.org/10.1002/2015GL067278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801, https://doi.org/10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018: Ten-year analysis of tropopause-overshooting convection using gridrad data. J. Geophys. Res. Atmos., 123, 329343, https://doi.org/10.1002/2017JD027718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., and M. M. Bell, 2020: A comparison of the polarimetric radar characteristics of heavy rainfall from Hurricanes Harvey (2017) and Florence (2018). J. Geophys. Res. Atmos., 125, e2019JD032212, https://doi.org/10.1029/2019JD032212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze, and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical wind shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 45214541, https://doi.org/10.1175/MWR-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 45, 13 51313 522, https://doi.org/10.1029/2018GL080739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, Inc., 562 pp.

  • Dunion, J. P., G. A. Wick, P. G. Black, and J. Walker, 2018: Sensing hazards with operational unmanned technology: 2015–2016 campaign summary, final report. NOAA Tech. Memo. OAR UAS-001, 49 pp., https://uas.noaa.gov/Portals/5/Docs/NOAA-UAS-Tech-Memo-1-SHOUT-Field-Campaigns-Summary_25Apr2018.pdf.

  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, https://doi.org/10.1175/MWR-2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emory, A. E., M. McLinden, M. Schreier, and G. A. Wick, 2015: An introduction to the NASA East Pacific Origins and Characteristics of Hurricanes (EPOCH) field campaign. Trop. Cyclone Res. Rev., 124131, https://doi.org/10.6057/2015TCRRh3.03.

    • Search Google Scholar
    • Export Citation
  • Feng, Y.-C., and M. M. Bell, 2019: Microphysical characteristics of an asymmetric eyewall in major Hurricane Harvey (2017). Geophys. Res. Lett., 46, 461471, https://doi.org/10.1029/2018GL080770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and E. R. Mansell, 2017: Electrification and lightning in idealized simulations of a hurricane-like vortex subject to wind shear and sea surface temperature cooling. J. Atmos. Sci., 74, 20232041, https://doi.org/10.1175/JAS-D-16-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, https://doi.org/10.1175/2009MWR2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., R. F. Rogers, and P. D. Reasor, 2020: The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Mon. Wea. Rev., 148, 9811004, https://doi.org/10.1175/MWR-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105, 11191135, https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 24332451, https://doi.org/10.1175/1520-0493(1993)121<2433:TKSOHG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., H. E. Willoughby, M. L. Black, and C. E. Samsury, 1997: Wind shear, sea surface temperature and convection in hurricanes observed by airborne Doppler radar. 22nd Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 121–122.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, D. R. MacGorman, M. R. Kumjian, and A. O. Fierro, 2014: An electrical and polarimetric analysis of the overland reintensification of Tropical Storm Erin (2007). Mon. Wea. Rev., 142, 23212344, https://doi.org/10.1175/MWR-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinser, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handler, S. L., and C. R. Homeyer, 2018: Radar-observed bulk microphysics of midlatitude leading line trailing stratiform mesoscale convective systems. J. Appl. Meteor. Climatol., 57, 22312248, https://doi.org/10.1175/JAMC-D-18-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H., and D. Rubsam, 1968: Hurricane Hilda, 1964. Mon. Wea. Rev., 96, 617636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883903, https://doi.org/10.1175/MWR-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 16371652, https://doi.org/10.1175/2011JAS3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 26442661, https://doi.org/10.1175/JAS-D-11-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, X. Ge, and T. Li, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650663, https://doi.org/10.1175/WAF-D-10-05051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, S. L. Durden, R. L. Herman, and T. P. Bui, 2006: Ice microphysics observations in Hurricane Humberto: Comparison with non-hurricane-generated ice cloud layers. J. Atmos. Sci., 63, 288308, https://doi.org/10.1175/JAS3603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, https://doi.org/10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional Gridded NEXRAD WSR-88D Radar (GridRad) dataset. Tech. Rep., 23 pp., https://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Houze, R. A., F. D. Marks, and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49, 943963, https://doi.org/10.1175/1520-0469(1992)049<0943:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., D. Rosenfeld, A. Ryzhkov, and P. Zhang, 2020: Synergetic use of the WSR-88D radars, GOES-R satellites, and lightning networks to study microphysical characteristics of hurricanes. J. Appl. Meteor. Climatol., 59, 10511068, https://doi.org/10.1175/JAMC-D-19-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU–CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856, https://doi.org/10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. Wea. Forecasting, 31, 601608, https://doi.org/10.1175/WAF-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and R. A. Houze, 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317, https://doi.org/10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, https://doi.org/10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, J. Dudhia, J. B. Halverson, R. Hood, and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127150, https://doi.org/10.1175/JAS3590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. F. Jewett, S. Nesbitt, M. Gilmore, and T.-L. Hsieh, 2012: Vertical velocity and microphysical distributions related to the rapid intensification of Hurricane Dennis (2005). J. Atmos. Sci., 69, 35153534, https://doi.org/10.1175/JAS-D-12-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., A. Ryzhkov, and P. Zhang, 2020: Columnar vertical profile (CVP) methodology for validating polarimetric radar retrievals in ice using in situ aircraft measurements. J. Atmos. Oceanic Technol., 37, 16231642, https://doi.org/10.1175/JTECH-D-20-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., R. Rogers, J. Zawislak, and J. A. Zhang, 2020: Assessing the influence of convective downdrafts and surface enthalpy fluxes on tropical cyclone intensity change in moderate shear. Mon. Wea. Rev., 147, 35193534, https://doi.org/10.1175/MWR-D-18-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NWS/ROC, 1991: NOAA Next Generation Radar (NEXRAD) level II base data. NOAA National Centers for Environmental Information, accessed May 2017 to May 2018, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599, https://doi.org/10.1175//2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, https://doi.org/10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, https://doi.org/10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. 1st ed. Springer, 486 pp., https://doi.org/10.1007/978-3-030-05093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, https://doi.org/10.1175/JTECH1772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005b: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Bukovcic, A. Murphy, P. Zhang, and G. McFarquhar, 2018: Ice microphysical retrievals using polarimetric radar data. 10th European Conf. on Radar in Meteorology and Hydrology, the Netherlands, KNMI, 40, projects.knmi.nl/erad2018/ERAD2018_extended_abstract_040.pdf.

  • Ryzhkov, A. V., J. Snyder, J. Carlin, A. Khain, and M. Pinsky, 2020: What polarimetric weather radars offer to cloud modelers: Forward radar operators and microphysical/thermodynamical retrievals. Atmosphere, 11, 362, https://doi.org/10.3390/atmos11040362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150168, https://doi.org/10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, and D. R. Clabo, 2005: Climatological analysis of DSDS in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 15R.4, https://ams.confex.com/ams/pdfpapers/95995.pdf.

  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275, https://doi.org/10.1029/RS013i002p00271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm Labeling in Three Dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D., and D. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, https://doi.org/10.1175/2009JAS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D., and D. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, https://doi.org/10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. M., and M. R. Kumjian, 2017: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea. Forecasting, 32, 20652082, https://doi.org/10.1175/WAF-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, https://doi.org/10.1175/JAMC-D-13-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trömel, S., A. V. Ryzhkov, P. Zhang, and C. Simmer, 2014: Investigations of backscatter differential phase in the melting layer. J. Appl. Meteor. Climatol., 53, 23442359, https://doi.org/10.1175/JAMC-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 12901311, https://doi.org/10.1175/MWR-D-13-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., 2013: Polarimetric radar observations of biological scatterers in Hurricanes Irene (2011) and Sandy (2012). J. Atmos. Oceanic Technol., 30, 27542767, https://doi.org/10.1175/JTECH-D-13-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., D. M. Tobin, and M. R. Kumjian, 2016: Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma and Arkansas. Wea. Forecasting, 31, 11791196, https://doi.org/10.1175/WAF-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2015: A long-term, high-quality, high-vertical resolution GPS dropsonde dataset for hurricane and other studies. Bull. Amer. Meteor. Soc., 96, 961973, https://doi.org/10.1175/BAMS-D-13-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., K. Zhao, M. Xue, G. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12 41512 433, https://doi.org/10.1002/2016JD025307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., K. Zhao, W.-C. Lee, and F. Zhang, 2018: Microphysical and kinematic structure of convective-scale elements in the inner rainband of Typhoon Matmo (2014) after landfall. J. Geophys. Res. Atmos., 123, 65496564, https://doi.org/10.1029/2018JD028578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., K. Zhao, Y. Pan, and M. Xue, 2020: Evaluation of simulated drop size distributions and microphysical processes using polarimetric radar observations for landfalling Typhoon Matmo (2014). J. Geophys. Res. Atmos., 125, e2019JD031527, https://doi.org/10.1029/2019JD031527.

    • Search Google Scholar
    • Export Citation
  • Wen, L., and Coauthors, 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res. Atmos., 123, 65296548, https://doi.org/10.1029/2017JD027950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., W. A. Petersen, A. Tokay, D. A. Marks, and J. L. Pippitt, 2019: Assessing dual-polarization radar estimates of extreme rainfall during Hurricane Harvey. J. Atmos. Oceanic Technol., 36, 25012520, https://doi.org/10.1175/JTECH-D-19-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 21472159, https://doi.org/10.1175/MWR-D-17-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, https://doi.org/10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 186 186 63
Full Text Views 73 73 23
PDF Downloads 94 94 31

Polarimetric Signatures in Landfalling Tropical Cyclones

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 3 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • 4 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • 5 School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
  • 6 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • 7 NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

Polarimetric radar observations from the NEXRAD WSR-88D operational radar network in the contiguous United States, routinely available since 2013, are used to reveal three prominent microphysical signatures in landfalling tropical cyclones: 1) hydrometeor size sorting within the eyewall convection, 2) vertical displacement of the melting layer within the inner core, and 3) dendritic growth layers within stratiform regions of the inner core. Size sorting signatures within eyewall convection are observed with greater frequency and prominence in more intense hurricanes, and are observed predominantly within the deep-layer environmental wind shear vector-relative quadrants that harbor the greatest frequency of deep convection (i.e., downshear and left-of-shear). Melting-layer displacements are shown that exceed 1 km in altitude compared to melting-layer altitudes in outer rainbands and are complemented by analyses of archived dropsonde data. Dendritic growth and attendant snow aggregation signatures in the inner core are found to occur more often when echo-top altitudes are low (≤10 km MSL), nearer the −15°C isotherm commonly associated with dendritic growth. These signatures, uniquely observed by polarimetric radar, provide greater insight into the physical structure and thermodynamic characteristics of tropical cyclones, which are important for improving rainfall estimation and the representation of tropical cyclones in numerical models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0111.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cameron R. Homeyer, chomeyer@ou.edu

Abstract

Polarimetric radar observations from the NEXRAD WSR-88D operational radar network in the contiguous United States, routinely available since 2013, are used to reveal three prominent microphysical signatures in landfalling tropical cyclones: 1) hydrometeor size sorting within the eyewall convection, 2) vertical displacement of the melting layer within the inner core, and 3) dendritic growth layers within stratiform regions of the inner core. Size sorting signatures within eyewall convection are observed with greater frequency and prominence in more intense hurricanes, and are observed predominantly within the deep-layer environmental wind shear vector-relative quadrants that harbor the greatest frequency of deep convection (i.e., downshear and left-of-shear). Melting-layer displacements are shown that exceed 1 km in altitude compared to melting-layer altitudes in outer rainbands and are complemented by analyses of archived dropsonde data. Dendritic growth and attendant snow aggregation signatures in the inner core are found to occur more often when echo-top altitudes are low (≤10 km MSL), nearer the −15°C isotherm commonly associated with dendritic growth. These signatures, uniquely observed by polarimetric radar, provide greater insight into the physical structure and thermodynamic characteristics of tropical cyclones, which are important for improving rainfall estimation and the representation of tropical cyclones in numerical models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0111.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cameron R. Homeyer, chomeyer@ou.edu
Save