• Anderson, J., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.3402/TELLUSA.V61I1.15524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, https://doi.org/10.1175/MWR-D-11-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/PNAS.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 20462061, https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: Nasa’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1975: A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res., 11, 543550, https://doi.org/10.1029/WR011I004P00543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., F. Zhang, X. Chen, and L. R. Leung, 2020: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 32033224, https://doi.org/10.1175/MWR-D-19-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311318, https://doi.org/10.1175/BAMS-88-3-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019: Development of a convection-permitting air–sea-coupled ensemble data assimilation system for tropical cyclone prediction. J. Adv. Model. Earth Syst., 11, 34743496, https://doi.org/10.1029/2019MS001795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018a: Atmospheric overturning across multiple scales of an MJO event during the CINDY/DYNAMO campaign. J. Atmos. Sci., 75, 381399, https://doi.org/10.1175/JAS-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018b: Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution. Atmos. Chem. Phys., 18, 10031022, https://doi.org/10.5194/ACP-18-1003-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, L. R. Leung, and F. Zhang, 2018c: Multiscale atmospheric overturning of the Indian summer monsoon as seen through isentropic analysis. J. Atmos. Sci., 75, 30113030, https://doi.org/10.1175/JAS-D-18-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845, https://doi.org/10.1175/MWR3351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y, F. Zhang, B. W. Green, and X. Yu, 2018: Impacts of ocean cooling and reduced wind drag on Hurricane Katrina (2005) based on numerical simulations. Mon. Wea. Rev., 146, 287306, https://doi.org/10.1175/MWR-D-17-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., and D. F. Parrish, 1991: The behavior of forecast error covariances for a Kalman filter in two dimensions. Mon. Wea. Rev., 119, 17571785, https://doi.org/10.1175/1520-0493(1991)119<1757:TBOFEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/QJ.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific Basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohan, K., and N. Maximenko, 2010: Monitoring ocean currents with satellite sensors. Oceanography, 23, 94103, https://doi.org/10.5670/OCEANOG.2010.08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27, 104115, https://doi.org/10.5670/OCEANOG.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/ANNUREV.EARTH.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2018: 100 Years of Progress in Tropical Cyclone Research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    • Crossref
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolov, S., C. H. Bishop, T. Holt, J. Cummings, and D. Kuhl, 2016: Facilitating strongly coupled ocean–atmosphere data assimilation with an interface solver. Mon. Wea. Rev., 144, 320, https://doi.org/10.1175/MWR-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginis, I., 2002: Tropical cyclone-ocean interactions. Adv. Fluid Mech., 33, 83114.

  • Haakman, K., J.-M. Sayol, C. G. van der Boog, and C. A. Katsman, 2019: Statistical characterization of the observed cold wake induced by North Atlantic hurricanes. Remote Sens., 11, 2368, https://doi.org/10.3390/RS11202368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, https://doi.org/10.1175/JPO-D-14-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. L., P. G. Black, V. E. Delnore, and C. T. Swift, 1981: Airborne microwave remote-sensing measurements of Hurricane Allen. Science, 214, 274280, https://doi.org/10.1126/SCIENCE.214.4518.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, S., and Coauthors, 2012: Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J. Phys. Oceanogr., 42, 18821906, https://doi.org/10.1175/JPO-D-11-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C. Lozano, V. Tallapragada, D. Iredell, D. Sheinin, H. L. Tolman, V. M. Gerald, and J. Sims, 2014: Performance of ocean simulations in the coupled HWRF–HYCOM model. J. Atmos. Oceanic Technol., 31, 545559, https://doi.org/10.1175/JTECH-D-13-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 13061322, https://doi.org/10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., J.-N. Thépaut, and D. Dee, 2016a: Impact of scatterometer surface wind data in the ECMWF coupled assimilation system. Mon. Wea. Rev., 144, 12031217, https://doi.org/10.1175/MWR-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen, 2016b: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 6578, https://doi.org/10.1002/qj.2629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10 01910 026, https://doi.org/10.1029/2018GL079677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., C.-C. Lien, I.-I. Lin, and S.-P. Xie, 2015: Tropical cyclone–induced ocean response: A comparative study of the South China Sea and tropical northwest Pacific. J. Climate, 28, 59525968, https://doi.org/10.1175/JCLI-D-14-00651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, P. C., L. K. Shay, J. K. Brewster, and B. Jaimes, 2016: Observed ocean thermal response to Hurricanes Gustav and Ike. J. Geophys. Res. Oceans, 121, 162179, https://doi.org/10.1002/2015JC010912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 10631081, https://doi.org/10.1175/MWR-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 52645271, https://doi.org/10.1002/2014GL060863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., P. Laloyaux, K. Haines, and M. A. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 46314644, https://doi.org/10.1175/MWR-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, S. A. Braun, J. A. Sippel, and A. C. Didlake, 2018: The inner-core temperature structure of Hurricane Edouard (2014): Observations and ensemble variability. Mon. Wea. Rev., 146, 135155, https://doi.org/10.1175/MWR-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., X. Chen, F. Zhang, and C. A. Davis, 2020: Nonlinear impacts of surface exchange coefficient uncertainty on tropical cyclone intensity and air-sea interactions. Geophys. Res. Lett., 47, e2019GL085783, https://doi.org/10.1029/2019GL085783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osuri, K. K., U. C. Mohanty, A. Routray, M. Mohapatra, and D. Niyogi, 2013: Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW Model. J. Appl. Meteor. Climatol., 52, 24762492, https://doi.org/10.1175/JAMC-D-12-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, https://doi.org/10.1146/annurev-marine-121211-172315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmen, E., 1948: On the formation and structure of tropical hurricanes. Geophysica, 3, 2638.

  • Pauluis, O. M., and F. Zhang, 2017: Reconstruction of thermodynamic cycles in a high-resolution simulation of a hurricane. J. Atmos. Sci., 74, 33673381, https://doi.org/10.1175/JAS-D-16-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169ES172, https://doi.org/10.1175/BAMS-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst., 11, 18031829, https://doi.org/10.1029/2019MS001652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrie, W. A., 2006: Atmosphere-Ocean Interactions. WIT Press, 240 pp.

  • Poterjoy, J., and F. Zhang, 2011: Dynamics and structure of forecast error covariance in the core of a developing hurricane. J. Atmos. Sci., 68, 15861606, https://doi.org/10.1175/2011JAS3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., F. Zhang, and Y. Weng, 2014: The effects of sampling errors on the ENKF assimilation of inner-core hurricane observations. Mon. Wea. Rev., 142, 16091630, https://doi.org/10.1175/MWR-D-13-00305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2016: Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci., 8, 519541, https://doi.org/10.1146/annurev-marine-122414-033913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, https://doi.org/10.1175/BAMS-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and X. Chen, 2020: Island rainfall enhancement in the maritime continent. Geophys. Res. Lett., 47, e2019GL086545, https://doi.org/10.1029/2019GL086545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752759, https://doi.org/10.1002/2015GL067238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., A. M. Fowler, and A. S. Lawless, 2015: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere–ocean model. Tellus, 67A, 27025, https://doi.org/10.3402/tellusa.v67.27025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, G. W., J. M. Grymes III, J. R. Dingler, and D. A. Pepper, 1997: Overview and significance of hurricanes on the Louisiana Coast, USA. J. Coast. Res., 13, 656669, https://www.jstor.org/stable/4298661.

    • Search Google Scholar
    • Export Citation
  • Trahan, S., and L. Sparling, 2012: An analysis of NCEP tropical cyclone vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744756, https://doi.org/10.1175/WAF-D-11-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1982: A note on the sea surface temperature sensitivity of a numerical model of tropical storm genesis. Mon. Wea. Rev., 110, 20632069, https://doi.org/10.1175/1520-0493(1982)110<2063:ANOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2015: A long-term, high-quality, high-vertical-resolution GPS dropsonde dataset for hurricane and other studies. Bull. Amer. Meteor. Soc., 96, 961973, https://doi.org/10.1175/BAMS-D-13-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153167, https://doi.org/10.1002/2015JD024198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015: Description and analysis of the ocean component of NOAA’s operational Hurricane Weather Research and Forecasting Model (HWRF). J. Atmos. Oceanic Technol., 32, 144163, https://doi.org/10.1175/JTECH-D-14-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., 2016: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Climate, 29, 85898610, https://doi.org/10.1175/JCLI-D-16-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133, 28762893, https://doi.org/10.1175/MWR3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2018: Promises in air-sea fully coupled data assimilation for future hurricane prediction. Geophys. Res. Lett., 45, 13 17313 177, https://doi.org/10.1029/2018GL080970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Minamide, R. G. Nystrom, X. Chen, S.-J. Lin, and L. M. Harris, 2019: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R all-sky radiances. Bull. Amer. Meteor. Soc., 100, 12171222, https://doi.org/10.1175/BAMS-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., Y. Wang, S. S. Chen, M. Curcic, and C. Gao, 2016: Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac. J. Geophys. Res. Oceans, 121, 861876, https://doi.org/10.1002/2015JC011320.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 142 142 42
Full Text Views 47 47 11
PDF Downloads 54 54 13

Dynamical Structures of Cross-Domain Forecast Error Covariance of a Simulated Tropical Cyclone in a Convection-Permitting Coupled Atmosphere–Ocean Model

View More View Less
  • 1 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • 2 Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • 3 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Understanding the dynamics of the flow-dependent forecast error covariance across the air–sea interface is beneficial toward revealing the potential influences of strongly coupled data assimilation on tropical cyclone (TC) initialization in coupled models, and the fundamental dynamics associated with TC air–sea interactions. A 200-member ensemble of convection-permitting forecasts from a coupled atmosphere–ocean regional model is used to investigate the forecast error covariance across the oceanic and atmospheric domains during the rapid intensification of Hurricane Florence (2018). Forecast uncertainties in both atmospheric and oceanic domains, from an Eulerian perspective, increase with forecast lead time, mainly from TC displacement errors. In a storm-relative framework, the ensemble forecast uncertainties in both domains are predominantly caused by differences in the simulated storm intensity and structure. The largest ensemble spread in the atmospheric pressure, temperature, and wind fields can be found within the TC inner-core region. Alternatively, the largest ensemble spread in the upper-ocean currents and temperature fields are located along the cold wake behind the storm. Cross-domain ensemble correlations between simulated atmospheric (oceanic) observations and oceanic (atmospheric) state variables in the storm-relative coordinates are highly anisotropic, variable dependent, and ultimately driven by the dynamics of TC air–sea interactions. Meaningful and dynamically consistent cross-domain ensemble correlations suggest that it is possible to use atmospheric and oceanic observations to simultaneously update state variables associated with the coupled ocean–atmosphere prediction of TCs using strongly coupled data assimilation. Sensitivity experiments demonstrate that at least 60–80 ensemble members are required to represent physically consistent cross-domain correlations and minimize sampling errors.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu

Abstract

Understanding the dynamics of the flow-dependent forecast error covariance across the air–sea interface is beneficial toward revealing the potential influences of strongly coupled data assimilation on tropical cyclone (TC) initialization in coupled models, and the fundamental dynamics associated with TC air–sea interactions. A 200-member ensemble of convection-permitting forecasts from a coupled atmosphere–ocean regional model is used to investigate the forecast error covariance across the oceanic and atmospheric domains during the rapid intensification of Hurricane Florence (2018). Forecast uncertainties in both atmospheric and oceanic domains, from an Eulerian perspective, increase with forecast lead time, mainly from TC displacement errors. In a storm-relative framework, the ensemble forecast uncertainties in both domains are predominantly caused by differences in the simulated storm intensity and structure. The largest ensemble spread in the atmospheric pressure, temperature, and wind fields can be found within the TC inner-core region. Alternatively, the largest ensemble spread in the upper-ocean currents and temperature fields are located along the cold wake behind the storm. Cross-domain ensemble correlations between simulated atmospheric (oceanic) observations and oceanic (atmospheric) state variables in the storm-relative coordinates are highly anisotropic, variable dependent, and ultimately driven by the dynamics of TC air–sea interactions. Meaningful and dynamically consistent cross-domain ensemble correlations suggest that it is possible to use atmospheric and oceanic observations to simultaneously update state variables associated with the coupled ocean–atmosphere prediction of TCs using strongly coupled data assimilation. Sensitivity experiments demonstrate that at least 60–80 ensemble members are required to represent physically consistent cross-domain correlations and minimize sampling errors.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu
Save