• Alexander, L. S., D. M. Sills, and P. A. Taylor, 2018: Initiation of convective storms at low-level mesoscale boundaries in southwestern Ontario. Wea. Forecasting, 33, 583598, https://doi.org/10.1175/WAF-D-17-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnott, N. R., Y. P. Richardson, J. M. Wurman, and E. M. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311335, https://doi.org/10.1175/MWR3065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, https://doi.org/10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463476, https://doi.org/10.1175/1520-0493(1987)115<0463:TGZITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., J. W. Schipper, N. Kalthoff, B. Adler, C. Kottmeier, A. Blyth, and S. Mobbs, 2010: Model representation of boundary-layer convergence triggering deep convection over complex terrain: A case study from COPS. Atmos. Res., 95, 172185, https://doi.org/10.1016/j.atmosres.2009.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., J. Hardin, B. Isom, I. Lindenmaier, A. Matthews, and D. Nelson, 2018: C-Band Scanning ARM Precipitation Radar (CSAPR2CFRPPI). Atmospheric Radiation Measurement (ARM) user facility, accessed 1 September 2019, https://doi.org/10.5439/1482633.

    • Crossref
    • Export Citation
  • Brady, R., and J. Waldstreicher, 2001: Observations of mountain wave–induced precipitation shadows over northeast Pennsylvania. Wea. Forecasting, 16, 281300, https://doi.org/10.1175/1520-0434(2001)016<0281:OOMWIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 2001: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 24732505, https://doi.org/10.1175/MWR3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Center for Severe Weather Research, 2019: CSWR RELAMPAGO dataset, version 1.0. CSWR, accessed 24 March 2020.

  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., and et al. , 2008: The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5774, https://doi.org/10.1175/BAMS-89-1-57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, https://doi.org/10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degelia, S. K., X. Wang, and D. Stensrud, 2019: An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea. Rev., 147, 27392764, https://doi.org/10.1175/MWR-D-18-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus, 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Wea. Forecasting, 28, 9941018, https://doi.org/10.1175/WAF-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: The effects of moisture on trapped mountain lee waves. J. Atmos. Sci., 39, 24902506, https://doi.org/10.1175/1520-0469(1982)039<2490:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134, 7991, https://doi.org/10.1175/MWR3055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209228, https://doi.org/10.1016/0021-9991(75)90037-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GRAW, 2020: Radiosondes DFM-09. GRAW radiosondes, accessed 1 September 2020, https://www.graw.de/products/radiosondes/dfm-09/.

  • Hagen, M., J. van Baelen, and E. Richard, 2018: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137, 224235, https://doi.org/10.1002/qj.784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and N. Nishi, 2010: Development of a cloud-top height estimation method by geostationary satellite split-window measurement trained with CloudSat data. J. Appl. Meteor. Climatol., 49, 20352049, https://doi.org/10.1175/2010JAMC2287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., J. Kyrouac, and E. Keeler, 2018: Balloon-Borne Sounding System (SONDEWNPN). Atmospheric Radiation Measurement (ARM) user facility, accessed 1 September 2019, https://doi.org/10.5439/1482633.

    • Crossref
    • Export Citation
  • Houston, A. L., and D. Niyogi, 2007: The sensitivity of convective initiation to the lapse rate of the active cloud-bearing layer. Mon. Wea. Rev., 135, 30133032, https://doi.org/10.1175/MWR3449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janert, P. K., 2011: Data Analysis with Open Source Tools. O’Reilly, 509 pp.

  • Kerr, C. A., D. J. Stensrud, and X. Wang, 2017: Verification of convection-allowing model ensemble analyses of near-storm environments using MPEX upsonde observations. Mon. Wea. Rev., 145, 857875, https://doi.org/10.1175/MWR-D-16-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378, https://doi.org/10.1175/2010JAS3642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 16901709, https://doi.org/10.1175/JAS-D-12-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, M. A., and J. W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 18471864, https://doi.org/10.1175/2007MWR2279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and X. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, https://doi.org/10.1175/2010JCLI3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2014: Empirical examination of the factors regulating thunderstorm initiation. Mon. Wea. Rev., 142, 240258, https://doi.org/10.1175/MWR-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madaus, L. E., and G. J. Hakim, 2017: Constraining ensemble forecasts of discrete convective initiation with surface observations. Mon. Wea. Rev., 145, 25972610, https://doi.org/10.1175/MWR-D-16-0395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manins, P. C., and B. L. Sawford, 1982: Mesoscale observations of upstream blocking. Quart. J. Roy. Meteor. Soc., 108, 427434, https://doi.org/10.1002/qj.49710845608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2007: Observations of vertical wind shear heterogeneity in convective boundary layers. Mon. Wea. Rev., 135, 843861, https://doi.org/10.1175/MWR3334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Markowski, P., C. Hannon, and E. Rasmussen, 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, https://doi.org/10.1175/MWR3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 17491768, https://doi.org/10.1175/MWR3367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132146, https://doi.org/10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., L. C. Harrison, and K. L. Corbosiero, 2019: Examination of the eXpendable digital dropsonde-derived vertical velocities from the Tropical Cyclone Intensity (TCI) experiment. Mon. Wea. Rev., 147, 23672386, https://doi.org/10.1175/MWR-D-18-0414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., L. C. Harrison, and K. L. Corbosiero, 2020: Temporal and spatial autocorrelations from expendable digital dropsondes (XDDs). J. Atmos. Oceanic Technol., 37, 381399, https://doi.org/10.1175/JTECH-D-19-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and et al. , 2016: RELAMPAGO experimental design overview. EOL Catalog, 59 pp.

  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. Hannah, and H. Morrison, 2019: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, https://doi.org/10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau-Rizzi, R., D. J. Kirshbaum, and M. K. Yau, 2017: Initiation of deep convection over an idealized mesoscale convergence line. J. Atmos. Sci., 74, 835853, https://doi.org/10.1175/JAS-D-16-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachsperger, J., S. Serafin, and V. V. Grubišić, 2015: Lee waves on the boundary-layer inversion and their dependence on free-atmospheric stability. Front. Earth. Sci., 3, 70, https://doi.org/10.3389/feart.2015.00070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R., 2019: CSU mobile radiosonde data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 September 2019, https://doi.org/10.26023/3QGG-JQKS-AF0G.

    • Crossref
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Sivaraman, C., S. McFarlane, E. Chapman, M. Jensen, T. Toto, S. Liu, and M. Fischer, 2013: Planetary boundary layer (PBL) height value added product (VAP): Radiosonde retrievals. DOE/SC-ARM/TR-132, 36 pp., https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-132.pdf.

  • Soderholm, B., B. Ronalds, and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 14301451, https://doi.org/10.1175/MWR-D-13-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sørensen, J. H., A. Rasmussen, T. Ellermann, and E. Lyck, 1998: Mesoscale influence on long-range transport–evidence from ETEX modeling and observations. Atmos. Environ., 32, 42074217, https://doi.org/10.1016/S1352-2310(98)00183-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stonitsch, J. R., and P. M. Markowski, 2007: Unusually long duration, multiple-Doppler radar observations of a front in a convective boundary layer. Mon. Wea. Rev., 135, 93117, https://doi.org/10.1175/MWR3261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, D. F., and N. A. Crook, 2005: Flow over heated terrain. Part II: Generation of convective precipitation. Mon. Wea. Rev., 133, 25652582, https://doi.org/10.1175/MWR2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2019: Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign report. DOE/SC-ARM-19-028, 31 pp., https://www.arm.gov/publications/programdocs/doe-sc-arm-19-028.pdf.

  • Varble, A., H. Morrison, and E. Zipser, 2020: Effects of under-resolved convective dynamics on the evolution of a squall line. Mon. Wea. Rev., 148, 289311, https://doi.org/10.1175/MWR-D-19-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936, https://doi.org/10.1175/2008MWR2584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Bian, W. O. Brown, H. Cole, and V. Grubišić, 2009: Vertical air motion from T-REX radiosonde and dropsonde data. J. Atmos. Oceanic Technol., 26, 928942, https://doi.org/10.1175/2008JTECHA1240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP 2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, https://doi.org/10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and et al. , 2004: An overview of the International H2O Project (IHOP 2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253278, https://doi.org/10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus, R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and et al. , 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, https://doi.org/10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, A. R. Rodi, T. Uttal, and J. M. Wilczak, 1988: Convection Initiation and Downburst Experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 13281347, https://doi.org/10.1175/1520-0477(1988)069<1328:CIADE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, https://doi.org/10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and et al. , 2008: The convective and orographically induced precipitation study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, https://doi.org/10.1175/JAS3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, https://doi.org/10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026, https://doi.org/10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, M. S. Buban, Y. P. Richardson, L. J. Miller, and R. M. Rabin, 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground-radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 24432472, https://doi.org/10.1175/MWR3411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3171 3171 60
Full Text Views 197 197 18
PDF Downloads 229 229 21

Radiosonde Observations of Environments Supporting Deep Moist Convection Initiation during RELAMPAGO-CACTI

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0148.s1.

Current affiliation: Cooperative Institute for Research in the Atmosphere and NOAA/NWS/Operations Proving Ground, Kansas City, Missouri.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Connor Nelson, timothy.nelson-1@colorado.edu

Abstract

The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-20-0148.s1.

Current affiliation: Cooperative Institute for Research in the Atmosphere and NOAA/NWS/Operations Proving Ground, Kansas City, Missouri.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Connor Nelson, timothy.nelson-1@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 114 KB)
Save