• Amburn, S. T., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. The University of Chicago Press, 324 pp.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W. Y., W. C. Lee, and Y. C. Liou, 2015: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317340, https://doi.org/10.1175/MWR-D-14-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y., 2016: Observational analysis of mesoscale rain cluster during typical torrential rain processes in Inner Mongolia (in Chinese). Yingyong Qixiang Xuebao, 27, 5666.

    • Search Google Scholar
    • Export Citation
  • Chen, B. J., Z. Q. Hu, L. P. Liu, and G. F. Zhang, 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos., 122, 11 09211 106, https://doi.org/10.1002/2017JD027233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., B. Fuchs, S. A. Rutledge, and E. A. Barnes, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 14531476, https://doi.org/10.1175/JAS-D-17-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, https://doi.org/10.1175/JTECH-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S. T., Y. S. Zhou, and L. K. Ran, 2018: A review on the formation mechanisms and forecast methods for torrential rain in China (in Chinese). Chin. J. Atmos. Sci., 42, 833846.

    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and R. A. Clark, 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100, 548552, https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for region droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 17611783, https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, L., Y. Luo, and D.-L. Zhang, 2018: The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances. J. Geophys. Res. Atmos., 123, 33953413, https://doi.org/10.1002/2017JD028106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, S. M., and S. J. Colucci, 2012: Organization of flash-flood producing precipitation in the northeast United States. Wea. Forecasting, 27, 345361, https://doi.org/10.1175/WAF-D-11-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, L., H. Chen, L. Li, B. Chen, X. Xiao, M. Chen, and G. Zhang, 2019: Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, Northern China. Remote Sens., 11, 1479, https://doi.org/10.3390/rs11121479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y., L. P. Liu, and W. Zhuang, 2009: Statistical characteristics of clutter and improvements of ground clutter identification technique with Doppler weather radar (in Chinese). Yingyong Qixiang Xuebao, 20, 203213.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour., 29, 311325, https://doi.org/10.1016/j.advwatres.2005.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., L. P. Liu, H. Y. Wang, and Y. Jiang, 2012: Identification of non-precipitation meteorological echoes with Doppler weather radar (in Chinese). Yingyong Qixiang Xuebao, 23, 147158.

    • Search Google Scholar
    • Export Citation
  • Li, H., X. Cui, and D.-L. Zhang, 2017: On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon. Wea. Rev., 145, 181197, https://doi.org/10.1175/MWR-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Y. Luo, Z. Guan, and D.-L. Zhang, 2018: An extreme rainfall event in coastal south China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res. Atmos., 123, 92569278, https://doi.org/10.1029/2018JD028418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. M. Liang, and Y. P. Li, 2017: Observational and simulative study of a local severe precipitation event caused by a cold vortex over northeast China. Adv. Meteor., 2017, 2764340, https://doi.org/10.1155/2017/2764340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Wang, H. Wang, Y. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a mei-yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, https://doi.org/10.1029/2010JD013873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain producing mesoscale convective system along a mei-yu front in East China. Mon. Wea. Rev., 142, 203221, https://doi.org/10.1175/MWR-D-13-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W., H. Chen, and D.-L. Zhang, 2015: On the rapid intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 38293849, https://doi.org/10.1175/JAS-D-14-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, https://doi.org/10.1175/MWR-D-11-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, https://doi.org/10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., and R. S. Schumacher, 2020: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159182, https://doi.org/10.1175/MWR-D-19-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saharia, M., P. Kirstetter, H. Vergara, J. J. Gourley, Y. Hong, and M. Giroud, 2017: Mapping flash flood severity in the United States. J. Hydrometeor., 18, 397411, https://doi.org/10.1175/JHM-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shusse, Y., N. Takahashi, K. Nakagawa, S. Satoh, and T. Iguchi, 2011: Polarimetric radar observation of the melting layer in a convective rainfall system during the rainy season over the East China Sea. J. Appl. Meteor. Climatol., 50, 354367, https://doi.org/10.1175/2010JAMC2469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 2003: Raindrop size distributions: Exponential or gamma—Does the difference matter? J. Appl. Meteor., 42, 10311034, https://doi.org/10.1175/1520-0450(2003)042<1031:RSDEOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., and R. S. Schumacher, 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 31473162, https://doi.org/10.1175/MWR-D-13-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from single-Doppler radar data. J. Atmos. Sci., 48, 876890, https://doi.org/10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. X., and J. Fang, 2013: Numerical study on the initiation of the severe convective weather in Chongqing on 6 May 2010. Acta Meteor. Sin., 27, 364378, https://doi.org/10.1007/s13351-013-0308-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., 1980: The structure and formation of the moist jet stream (in Chinese). Acta Meteor. Sin., 38, 331340.

  • Teshiba, M. S., P. B. Chilson, A. V. Ryzhkov, T. J. Schuur, and R. D. Palmer, 2009: A combined wind profiler and polarimetric weather radar method for the investigation of precipitation and vertical velocities. J. Atmos. Oceanic Technol., 26, 19401955, https://doi.org/10.1175/2008JTECHA1102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., 2009: Outcome regimes of binary raindrop collisions. Atmos. Res., 94, 389399, https://doi.org/10.1016/j.atmosres.2009.06.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, https://doi.org/10.1175/JTECH-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., J. A. Smith, and M. Steiner, 2003: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60, 12201238, https://doi.org/10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, https://doi.org/10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. H., and Coauthors, 2007: Advances in the study of rainstorm in Northeast China. Diqiu Kexue Jinzhan, 22, 549560.

  • Wang, G. L., W. K. Wong, L. P. Liu, and H. Y. Wang, 2013: Application of multi-scale tracking radar echoes scheme in quantitative precipitation nowcasting. Adv. Atmos. Sci., 30, 448460, https://doi.org/10.1007/s00376-012-2026-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. L., Y. Hong, L. Liu, W. K. Wong, A. Zahraei, and V. Lakshmanan, 2015: Inter-comparison of radar-based nowcasting schemes in Jianghuai River Basin, China. Meteor. Appl., 22, 289300, https://doi.org/10.1002/met.1451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. Y., L. P. Liu, G. L. Wang, W. Zhuang, Z. Q. Zhang, and X. L. Chen, 2009: Development and application of the Doppler weather radar 3-D digital mosaic system (in Chinese). Yingyong Qixiang Xuebao, 20, 241224.

    • Search Google Scholar
    • Export Citation
  • Wen, L., L. P. Liu, G. L. Wang, W. Zhuang, Z. Q. Zhang, and X. L. Chen, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res. Atmos., 122, 80338050, https://doi.org/10.1002/2016JD026346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar- observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., Y. Luo, F. Chen, and W. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 17991819, https://doi.org/10.1175/JAMC-D-18-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y. H., and L. P. Liu, 2017: Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci., 34, 727736, https://doi.org/10.1007/s00376-016-5235-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., Y. Zhang, L. Zhang, H. Lei, Y. Xie, L. Wen, and J. Yang, 2019: Characteristics of summer season raindrop size distribution in three typical regions of western Pacific. J. Geophys. Res. Atmos., 124, 40544073, https://doi.org/10.1029/2018JD029194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, R., and D.-L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19–20 July 2016 along the Taihang Mountains in north China. Mon. Wea. Rev., 147, 41994220, https://doi.org/10.1175/MWR-D-18-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. Y., G. G. Zheng, and L. P. Liu, 2004: Dynamical and microphysical retrieval from simulated Doppler radar observations using the 4DVAR assimilation technique (in Chinese). Acta Meteor. Sin., 62, 410422.

    • Search Google Scholar
    • Export Citation
  • Yang, S., X. Cui, and L. Ran, 2009: Analyses of dry intrusion and instability during a heavy rainfall event that occurred in northern China. Atmos. Oceanic Sci. Lett., 2, 108112, https://doi.org/10.1080/16742834.2009.11446779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., D.-L. Zhang, Y. Luo, and R. Ma, 2020: On the generation of the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955979, https://doi.org/10.1175/MWR-D-19-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, F., Y. H. Lee, Y. S. Meng, and J. T. Ong, 2018: Characterization of S-band dual-polarized radar data for the convective rain melting layer detection in a tropical region. Remote Sens., 10, 1740, https://doi.org/10.3390/rs10111740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Lin, P. Zhao, X. Yu, S. Wang, H. Kang, and Y. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 14261431, https://doi.org/10.1002/grl.50304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and D.-L. Zhang, 2012: Sub-kilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon. Wea. Rev., 140, 184201, https://doi.org/10.1175/MWR-D-11-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., Q. Zhang, and J. H. Zhao, 2016: Study on the quantitative relationship between the heavy precipitation process and VIL product of radar in southeast Gansu region (in Chinese). Plateau Meteor., 35, 528537.

    • Search Google Scholar
    • Export Citation
  • Zhong, L. Z., R. Mu, D.-L. Zhang, P. Zhao, Z. Zhang, and N. Wang, 2015: An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J. Geophys. Res. Atmos., 120, 32743291, https://doi.org/10.1002/2014JD022686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to cloud microphysical processes. J. Atmos. Sci., 63, 109126, https://doi.org/10.1175/JAS3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 125 125 44
Full Text Views 51 51 18
PDF Downloads 81 81 23

A Multiscale Analysis of a Nocturnal Extreme Rainfall Event of 14 July 2017 in Northeast China

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Science, Beijing, China
  • 2 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

A multiscale observational analysis of a nocturnal extreme rainfall event that occurred at Changtu in Northeast China on 14 July 2017 is performed using global analysis, automated surface observations, Doppler radar, rawinsonde, and disdrometer data. Results show that the large-scale environment was characterized by high convective available potential energy and precipitable water, moderate convective inhibition, and a southwesterly low-level jet (LLJ) capped by an inversion layer. The first and subsequent convective cells developed along a quasi-stationary surface convergence zone in a convection-void region of a previously dissipated meso-α-scale convective line. Continuous convective initiation through backbuilding at the western end and the subsequent merging of eastward-moving convective cells led to the formation of a near-zonally oriented meso-β-scale rainband, with reflectivity exceeding 45 dBZ (i.e., convective core intensity). This quasi-stationary rainband was maintained along the convergence zone by the LLJ of warm moist air, aided by local topographical lifting and convectively generated outflows. A maximum hourly rainfall amount of 96 mm occurred during 0200–0300 Beijing standard time as individual convective cores with a melting layer of >55 dBZ reflectivity moved across Changtu with little intermittency. The extreme-rain-producing stage was characterized with near-saturated vertical columns, and rapid number concentration increases of all raindrop sizes. It is concluded that the formation of the meso-β-scale rainband with continuous convective backbuilding, and the subsequent echo-training of convective cores with growing intensity and width as well as significant fallouts of frozen particles accounted for the generation of this extreme rainfall event. This extreme event was enhanced by local topography and the formation of a mesovortex of 20–30 km in diameter.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da-Lin Zhang, dalin@umd.edu

Abstract

A multiscale observational analysis of a nocturnal extreme rainfall event that occurred at Changtu in Northeast China on 14 July 2017 is performed using global analysis, automated surface observations, Doppler radar, rawinsonde, and disdrometer data. Results show that the large-scale environment was characterized by high convective available potential energy and precipitable water, moderate convective inhibition, and a southwesterly low-level jet (LLJ) capped by an inversion layer. The first and subsequent convective cells developed along a quasi-stationary surface convergence zone in a convection-void region of a previously dissipated meso-α-scale convective line. Continuous convective initiation through backbuilding at the western end and the subsequent merging of eastward-moving convective cells led to the formation of a near-zonally oriented meso-β-scale rainband, with reflectivity exceeding 45 dBZ (i.e., convective core intensity). This quasi-stationary rainband was maintained along the convergence zone by the LLJ of warm moist air, aided by local topographical lifting and convectively generated outflows. A maximum hourly rainfall amount of 96 mm occurred during 0200–0300 Beijing standard time as individual convective cores with a melting layer of >55 dBZ reflectivity moved across Changtu with little intermittency. The extreme-rain-producing stage was characterized with near-saturated vertical columns, and rapid number concentration increases of all raindrop sizes. It is concluded that the formation of the meso-β-scale rainband with continuous convective backbuilding, and the subsequent echo-training of convective cores with growing intensity and width as well as significant fallouts of frozen particles accounted for the generation of this extreme rainfall event. This extreme event was enhanced by local topography and the formation of a mesovortex of 20–30 km in diameter.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da-Lin Zhang, dalin@umd.edu
Save