• Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 1341, https://doi.org/10.1016/j.earscirev.2008.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Re-evaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, C.-L. Shie, and R. A. Boller, 2013: The evolution and role of the Saharan air layer during Hurricane Helene (2006). Mon. Wea. Rev., 141, 42694295, https://doi.org/10.1175/MWR-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, D. P., 2013: Tropical cyclone report Hurricane Nadine (10 September–3 October 2012). NHC Tech. Rep. AL142012, 19 pp., https://www.nhc.noaa.gov/data/tcr/AL142012_Nadine.pdf .

  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, https://doi.org/10.1029/2010JD014158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000a: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, https://doi.org/10.1029/2000JD900384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2000b: Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res., 105, 24 68924 712, https://doi.org/10.1029/2000JD900385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., T. Diehl, O. Dubovik, T. F. Eck, B. N. Holben, A. Sinyuk, and D. G. Streets, 2009: Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with AERONET measurements. Ann. Geophys., 27, 34393464, https://doi.org/10.5194/angeo-27-3439-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606, Vol. 15, 51 pp., http://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104606, Vol. 19, 54 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010072848.pdf.

  • Cotton, W. R., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Weather Mod., 39, 7073.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. M. Krall, and G. G. Carrió, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Trop. Cyclone Res. Rev., 1, 293306, https://doi.org/10.6057/2012TCRR03.05.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbener, S. R., S. C. van den Heever, G. G. Garrio, S. M. Saleeby, and W. R. Cotton, 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71, 20402055, https://doi.org/10.1175/JAS-D-13-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., and S.-W. Kim, 2008: Stable boundary layer mixing in a vertical diffusion scheme. 18th Symp. on Boundary Layers and Turbulence, Stockholm, Sweden, Amer. Meteor. Soc., 16B.2, https://ams.confex.com/ams/18BLT/webprogram/Paper140120.html.

  • Jenkins, G. S., A. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L08815, https://doi.org/10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2004: Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett., 31, L17208, https://doi.org/10.1029/2004GL020107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128, https://doi.org/10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10451075, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamic and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., N. Cohen, B. Lynn, and A. Pokrovsky, 2008: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 36523677, https://doi.org/10.1175/2008JAS2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with WRF Model with spectral bin microphysics. J. Atmos. Sci., 67, 365384, https://doi.org/10.1175/2009JAS3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., and Coauthors, 2006: Water activity and activation diameters from hygroscopicity data—Part II: Application to organic species. Atmos. Chem. Phys., 6, 795809, https://doi.org/10.5194/acp-6-795-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, https://doi.org/10.1175/JAS3879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, https://doi.org/10.1175/JAS-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and J. M. Kim, 2007a: How nature foiled the 2006 hurricane forecasts. Eos, Trans. Amer. Geophys. Union, 88, 105107, https://doi.org/10.1029/2007EO090002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and J. M. Kim, 2007b: Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett., 34, L23811, https://doi.org/10.1029/2007GL031538.

  • Liu, Y., and P. H. Daun, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, https://doi.org/10.1175/BAMS-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2014: Introducing multi-sensor satellite radiance-based evaluation for regional Earth system modeling. J. Geophys. Res. Atmos., 119, 84508475, https://doi.org/10.1002/2013JD021424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., S. Q. Zhang, W.-K. Tao, S. Lang, C. Ichoku, and C. Peters-Lidard, 2018: Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations. Climate Dyn., 55, 193213, https://doi.org/10.1007/s00382-018-4187-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messager, C., D. J. Parker, O. Reitebuch, A. Agusti-Panareda, C. M. Taylor, and J. Cuesta, 2010: Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Quart. J. Roy. Meteor. Soc., 136 (Suppl.), 107124, https://doi.org/10.1002/qj.469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterization in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1981: Saharan air outbreaks over the tropical North Atlantic. Pure Appl. Geophys., 119, 677691, https://doi.org/10.1007/BF00878167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., W. K. Lau, K.-M. Kim, and E. Brin, 2009: Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system. J. Atmos. Sci., 66, 35633578, https://doi.org/10.1175/2009JAS3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7, 34113424, https://doi.org/10.5194/acp-7-3411-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclone intensities. J. Atmos. Res., 102, 6676, https://doi.org/10.1016/j.atmosres.2011.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. G. Carrio, I. Ginnis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauter, K., and T. S. L’Ecuyer, 2017: Observational evidence for the vertical redistribution and scavenging of Saharan dust by tropical cyclones. Geophys. Res. Lett., 44, 64216430, https://doi.org/10.1002/2017GL074166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2014: Implementation of an aerosol-cloud microphysics-radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period. Quart. J. Roy. Meteor. Soc., 140, 21582175, https://doi.org/10.1002/qj.2286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and T. S. L’Ecuyer, 2014: Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos., 119, 39633975, https://doi.org/10.1002/2013JD020272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., K. M. Lau, and M. Kafatos, 2008: Contrasting the 2007 and 2005 hurricane seasons: Evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the Atlantic basin. Geophys. Res. Lett., 35, L15405, https://doi.org/10.1029/2008GL034529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., S. A. Braun, J. J. Shi, M. Chin, D. Kim, T. Matsui, and C. Peters-Lidard, 2018: Microphysics and radiation effect of dust on Saharan air layer—A HS3 case study. Mon. Wea. Rev., 146, 18131835, https://doi.org/10.1175/MWR-D-17-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., 2007: Impact of Saharan air layer on hurricane peak intensity. Geophys. Res. Lett., 34, L09802, https://doi.org/10.1029/2007GL029564.

  • Zhang, H., G. M. McFaquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, https://doi.org/10.1029/2007GL029876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFaquhar, W. R. Cotton, and Y. Deng, 2009: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36, L06802, https://doi.org/10.1029/2009GL037276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 50
Full Text Views 30 30 9
PDF Downloads 29 29 7

Influence of the Saharan Air Layer on Hurricane Nadine (2012). Part I: Observations from the Hurricane and Severe Storm Sentinel (HS3) Investigation and Modeling Results

View More View Less
  • 1 a NASA/Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 b Morgan State University, Baltimore, Maryland
  • | 3 c Universities Space Research Association, Columbia, Maryland
  • | 4 d Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study uses a model with aerosol–cloud–radiation coupling to examine the impact of Saharan dust and other aerosols on Hurricane Nadine (2012). To study aerosol direct (radiation) and indirect (cloud microphysics) effects from individual, as well as all aerosol species, eight different NU-WRF Model simulations were conducted. In several simulations, aerosols led to storm strengthening, followed by weakening relative to the control simulation. This variability of the aerosol impact may be related to whether aerosols are ingested into clouds within the outer rainbands or the eyewall. Upper-tropospheric aerosol concentrations indicate vertical transport of all aerosol types in the outer bands but only vertical transport of sea salt in the inner core. The results suggest that aerosols, particularly sea salt, may have contributed to a stronger initial intensification but that aerosol ingestion into the outer bands at later times may have weakened the storm in the longer term. In most aerosol experiments, aerosols led to a reduction in cloud and precipitation hydrometeors, the exception being the dust-only case that produced periods of enhanced hydrometeor growth. The Saharan air layer (SAL) also impacted Nadine by causing a region of strong easterlies impinging on the eastern side of the storm. At the leading edge of these easterlies, cool and dry air near the top of the SAL was being ingested into the outer-band convection. This midlevel low-equivalent-potential-temperature air gradually lowered toward the surface and eventually contributed to significant cold-pool activity in the eastern rainband and in the northeast quadrant of the storm. Such enhanced downdraft activity could have led to weakening of the storm, but it is not presently possible to quantify this impact.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Corresponding author: Jainn J. Shi, jainn.j.shi@nasa.gov

Abstract

This study uses a model with aerosol–cloud–radiation coupling to examine the impact of Saharan dust and other aerosols on Hurricane Nadine (2012). To study aerosol direct (radiation) and indirect (cloud microphysics) effects from individual, as well as all aerosol species, eight different NU-WRF Model simulations were conducted. In several simulations, aerosols led to storm strengthening, followed by weakening relative to the control simulation. This variability of the aerosol impact may be related to whether aerosols are ingested into clouds within the outer rainbands or the eyewall. Upper-tropospheric aerosol concentrations indicate vertical transport of all aerosol types in the outer bands but only vertical transport of sea salt in the inner core. The results suggest that aerosols, particularly sea salt, may have contributed to a stronger initial intensification but that aerosol ingestion into the outer bands at later times may have weakened the storm in the longer term. In most aerosol experiments, aerosols led to a reduction in cloud and precipitation hydrometeors, the exception being the dust-only case that produced periods of enhanced hydrometeor growth. The Saharan air layer (SAL) also impacted Nadine by causing a region of strong easterlies impinging on the eastern side of the storm. At the leading edge of these easterlies, cool and dry air near the top of the SAL was being ingested into the outer-band convection. This midlevel low-equivalent-potential-temperature air gradually lowered toward the surface and eventually contributed to significant cold-pool activity in the eastern rainband and in the northeast quadrant of the storm. Such enhanced downdraft activity could have led to weakening of the storm, but it is not presently possible to quantify this impact.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Corresponding author: Jainn J. Shi, jainn.j.shi@nasa.gov
Save