• Alekseenko, S. V., and S. I. Shtork, 1997: Traveling vortex breakdown. Pis’ma Zh. Tekh. Fiz., 23, 2428.

  • Alekseenko, S. V., P. A. Kuibin, and V. L. Okulov, 2007: Theory of Concentrated Vortices. Springer, 488 pp.

  • Anderson, J. D., 2002: Modern Compressible Flow. McGraw Hill, 784 pp.

  • Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367, 2746, https://doi.org/10.1017/S0022112098001645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonescou, B., 2017: Tornadoes and Waterspouts in Europe. Self-published, 100 pp.

  • Arendt, S., D. C. Fritts, and Ø. Andreassen, 1997: The initial value problem for Kelvin vortex waves. J. Fluid Mech., 344, 181212, https://doi.org/10.1017/S0022112097005958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arfken, G. B., H. J. Weber, and F. E. Harris, 2013: Mathematical Methods for Physicists. Elsevier, 1205 pp.

  • Batchelor, G. K., 2002: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45, 28892919, https://doi.org/10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., 1962: Theory of vortex breakdown phenomenon. J. Fluid Mech., 14, 593629, https://doi.org/10.1017/S0022112062001482.

  • Billant, P., and S. Le Dizes, 2009: Waves on a columnar vortex in a strongly stratified fluid. Phys. Fluids, 21, 106602, https://doi.org/10.1063/1.3248366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, V., J. Bjerknes, H. Solberg, and T. Bergeron, 1933: Physikalische Hydrodynamik. Springer, 797 pp.

  • Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984, https://doi.org/10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bragg, S. L., and W. R. Hawthorne, 1950: Some exact solutions of the flow through annular cascade actuator discs. J. Aerosp. Sci., 17, 243249, https://doi.org/10.2514/8.1597.

    • Search Google Scholar
    • Export Citation
  • Brown, G. L., and J. M. Lopez, 1989: Axisymmetric vortex breakdown. Part II: Physical mechanisms. Aerodyn. Rep., 174, 118.

  • Chandrasekhar, S., 1961: Hydrodynamic and Hydromagnetic Stability. Dover, 652 pp.

  • Church, C. R., and J. T. Snow, 1993: Laboratory models of tornadoes. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, C. Church, et al., Eds., Amer. Geophys. Union, 277–295.

    • Crossref
    • Export Citation
  • Church, C. R., J. T. Snow, and E. M. Agee, 1977: Tornado vortex simulation at Purdue University. Bull. Amer. Meteor. Soc., 58, 900908, https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2020: Near-surface vortex formation in supercells from the perspective of vortex patch dynamics. Mon. Wea. Rev., 148, 35333547, https://doi.org/10.1175/MWR-D-20-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darmofal, D. L., and E. M. Murman, 1994: On the trapped wave nature of axisymmetric vortex breakdown. AIAA Conf. Paper AIAA-94-2318, AIAA, https://doi.org/10.2514/6.1994-2318.

    • Crossref
    • Export Citation
  • Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci., 30, 14271430, https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1976: Laboratory simulations of tornadoes. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 151–174.

  • Deal, J. R., 2018: Basics of Bessel functions. University Honors Thesis 546, Portland State University, 35 pp., https://doi.org/10.15760/honors.552.

    • Crossref
    • Export Citation
  • Drazin, P. G., 1974: On a model of instability of a slowly-varying flow. Quart. J. Mech. Appl. Math., 27, 6986, https://doi.org/10.1093/qjmam/27.1.69.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 1981: Hydrodynamic Stability. Cambridge University Press, 525 pp.

  • Escudier, M., 1988: Vortex breakdown: Observations and explanations. Prog. Aerosp. Sci., 25, 189229, https://doi.org/10.1016/0376-0421(88)90007-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabre, D., D. Sipp, and L. Jacquin, 2006: Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech., 551, 235274, https://doi.org/10.1017/S0022112005008463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falconer, I., 2019: Vortices and atoms in the Maxwellian era. Philos. Trans. Roy. Soc. London, 377A, 20180451, https://doi.org/10.1098/rsta.2018.0451.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum wind speeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340, https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fonda, E., D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P. Lathrop, 2014: Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl. Acad. Sci. USA, 111 (Suppl. 1), 47074710, https://doi.org/10.1073/pnas.1312536110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. Arendt, and Ø. Andreassen, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367, 4765, https://doi.org/10.1017/S0022112098001633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes, O. V., 2018: Motion of a helical vortex. J. Fluid Mech., 836, R1, https://doi.org/10.1017/jfm.2017.845.

  • Fultz, D., 1959: A note on overstability and the elastoid-inertial oscillations of kelvin, Solberg, and Bjerknes. J. Meteor., 16, 199208, https://doi.org/10.1175/1520-0469(1959)016<0199:ANOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallaire, F., and J.-M. Chomaz, 2003: Instability mechanisms in swirling flows. Phys. Fluids, 15, 26222639, https://doi.org/10.1063/1.1589011.

  • Gallaire, F., E. Ruith, E. Meiburg, J.-M. Chomaz, and P. Huerre, 2006: Spiral vortex breakdown as a global mode. J. Fluid Mech., 549, 7180, https://doi.org/10.1017/S0022112005007834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Grotjahn, R., 2000: Multiple waterspouts at Lake Tahoe. Bull. Amer. Meteor. Soc., 81, 695702, https://doi.org/10.1175/1520-0477(2000)081<0695:MWALT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. G., 1972: Vortex breakdown. Annu. Rev. Fluid Mech., 4, 195218, https://doi.org/10.1146/annurev.fl.04.010172.001211.

  • Hallock, J., and F. Holzäpfel, 2018: A review of recent wake vortex research for increasing airport capacity. Prog. Aerospace Sci., 98, 2736, https://doi.org/10.1016/j.paerosci.2018.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasimoto, H., 1972: A soliton on a vortex filament. J. Fluid Mech., 51, 477485, https://doi.org/10.1017/S0022112072002307.

  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. Academic Press, 552 pp.

  • Hopfinger, E. J., and K. Browand, 1982: Turbulence and waves in a rotating tank. Nature, 295, 393395, https://doi.org/10.1038/295393a0.

  • Hopfinger, E. J., K. K. Browand, and Y. Gagne, 1982: Turbulence and waves in a rotating tank. J. Fluid Mech., 125, 504534, https://doi.org/10.1017/S0022112082003462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huerre, P., and P. A. Monkewitz, 1990: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech., 22, 473537, https://doi.org/10.1146/annurev.fl.22.010190.002353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. D., 1995: On the interpretation of vortex breakdown. Phys. Fluids, 7, 16941702, https://doi.org/10.1063/1.868757.

  • Khoo, B. C., K. S. Yeo, D. F. Lim, and X. He, 1997: Vortex breakdown in an unconfined vortical flow. Exp. Therm. Fluid Sci., 14, 131148, https://doi.org/10.1016/S0894-1777(96)00033-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., 2016: Retrograde waves in tropical cyclone inner-core. Tellus, 68A, 31402, https://doi.org/10.3402/tellusa.v68.31402.

    • Crossref
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2008: Fluid Mechanics. Academic Press, 872 pp.

  • Lamb, H., 1932: Hydrodynamics. Cambridge University Press, 652 pp.

  • Lambourne, N. C., and D. W. Brayer, 1961: The bursting of leading-edge vortices—Some observations and discussion on the phenomenon. Aeronaut. Res. Counc. R&M, 3282, 136.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1978: The structure of vortex breakdown. Annu. Rev. Fluid Mech., 10, 221246, https://doi.org/10.1146/annurev.fl.10.010178.001253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1979: Waves in parallel or swirling stratified shear flows. J. Fluid Mech., 93, 401412, https://doi.org/10.1017/S0022112079002561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., and J. D. Randall, 1973: Amplification and decay of long nonlinear waves. J. Fluid Mech., 58, 481493, https://doi.org/10.1017/S0022112073002284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., S. N. Brown, and Y. Patel, 1986: Bending waves on inviscid columnar vortices. J. Fluid Mech., 173, 595624, https://doi.org/10.1017/S0022112086001283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2001: The effects of aircraft wake dynamics on contrail development. J. Atmos. Sci., 58, 390406, https://doi.org/10.1175/1520-0469(2001)058<0390:TEOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194, https://doi.org/10.1175/JAS3965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, C. Church, et al., Eds., Amer. Geophys. Union, 19–39.

    • Crossref
    • Export Citation
  • Liang, H., and T. Maxworthy, 2005: An experimental investigation of swirling jets. J. Fluid Mech., 525, 115159, https://doi.org/10.1017/S0022112004002629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, D. W., and L. G. Redekopp, 1998: Absolute instability conditions for variable density, swirling jet flows. Eur. J. Mech. B/Fluids, 17, 165185, https://doi.org/10.1016/S0997-7546(98)80057-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loiseleux, T., J. M. Chomaz, and P. Huerre, 1998: The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow. Phys. Fluids, 10, 11201134, https://doi.org/10.1063/1.869637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loiseleux, T., I. Delbende, and P. Huerre, 2000: Absolute and convective instabilities of a swirling jet/wake shear layer. Phys. Fluids, 12, 375380, https://doi.org/10.1063/1.870315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1953: Steady motion around a symmetrical obstacle along the axis of a rotating liquid. J. Meteor., 10, 197203, https://doi.org/10.1175/1520-0469(1953)010<0197:SMAASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucca-Negro, O., and T. O’Doherty, 2001: Vortex breakdown: A review. Prog. Energy Combust. Sci., 27, 431481, https://doi.org/10.1016/S0360-1285(00)00022-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lugt, H. J., 1989: Vortex breakdown in atmospheric columnar vortices. Bull. Amer. Meteor. Soc., 70, 15261537, https://doi.org/10.1175/1520-0477(1989)070<1526:VBIACV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1972: On the structure of concentrated, columnar vortices. Astronaut. Acta, 17, 363374.

  • Maxworthy, T., 1988: Waves on vortex cores. Fluid Dyn. Res., 3, 5262, https://doi.org/10.1016/0169-5983(88)90043-3.

  • Maxworthy, T., E. Hopfinger, and L. Redekopp, 1985: Wave motions on vortex cores. J. Fluid Mech., 151, 141165, https://doi.org/10.1017/S0022112085000908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melander, M. V., and F. Hussain, 1994: Core dynamics on a vortex column. Fluid Dyn. Res., 13, 137, https://doi.org/10.1016/0169-5983(94)90061-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meliga, P., F. Gallaire, and J.-M. Chomaz, 2012: A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech., 699, 216262, https://doi.org/10.1017/jfm.2012.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moise, P., 2020a: An assessment of theories modeling vortex breakdown as a transition between cylindrical flow states. Phys. Fluid., 32, 123601, https://doi.org/10.1063/5.0030182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moise, P., 2020b: Bistability of bubble and conical forms of vortex breakdown in laminar swirling jets. J. Fluid Mech., 889, A31, https://doi.org/10.1017/jfm.2020.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moise, P., and J. Mathew, 2019: Bubble and conical forms of vortex breakdown in swirling jets. J. Fluid Mech., 873, 322357, https://doi.org/10.1017/jfm.2019.401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monkewitz, P. A., 1988: A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech., 192, 561575, https://doi.org/10.1017/S0022112088001983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, J. S., F. Lückoff, P. Paredes, V. Theofilis, and K. Oberleithner, 2020: Receptivity of the turbulent precessing vortex core: Synchronization experiments and global adjoint linear stability analysis. J. Fluid Mech., 888, A3, https://doi.org/10.1017/jfm.2019.1063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakariakov, V., and L. Ofman, 2002: Kink oscillations of coronal loops as a tool for the determination of coronal magnetic field. Proc. 10th European Solar Physics Meeting, Prague, Czech Republic, European Space Agency, 461–463.

  • Nolan, D. S., 2012: Three-dimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech., 711, 61100, https://doi.org/10.1017/jfm.2012.369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: The structure and dynamics of tornado-like vortices. J. Atmos. Sci., 56, 29082936, https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberleithner, K., C. O. Paschereit, R. Seele, and I. Wyganski, 2012: Formation of turbulent vortex breakdown: Intermittency, criticality, and global instability. AIAA J., 50, 14371452, https://doi.org/10.2514/1.J050642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., 2019: A violently tornadic supercell thunderstorm simulation spanning a quarter-trillion grid volumes: Computational challenges, I/O framework, and visualizations of tornadogenesis. Atmosphere, 10, 578, https://doi.org/10.3390/atmos10100578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peckham, D. H., and S. A. Atkinson, 1957: Preliminary results of low speed wind tunnel tests on a Gothic wind of aspect ratio 1.0. Aeronaut. Res. Council., 508, 135.

    • Search Google Scholar
    • Export Citation
  • Pier, B., and P. Huerre, 2001: Nonlinear synchronization in open flows. J. Fluids Struct., 15, 471480, https://doi.org/10.1006/jfls.2000.0349.

  • Pier, B., and N. Peake, 2015: Global modes with multiple saddle points. Eur. J. Mech. B/Fluids, 49, 335344, https://doi.org/10.1016/j.euromechflu.2014.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradeep, D. S., and F. Hussain, 2006: Transient growth of perturbations in a vortex column. J. Fluid Mech., 550, 251288, https://doi.org/10.1017/S0022112005008207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qadri, U. A., D. Mistry, and M. Juniper, 2013: Structural sensitivity of spiral vortex breakdown. J. Fluid Mech., 720, 558581, https://doi.org/10.1017/jfm.2013.34.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, J. D., and S. Leibovich, 1973: The critical state: A trapped wave model of vortex breakdown. J. Fluid Mech., 58, 495515, https://doi.org/10.1017/S0022112073002296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, M., 2000: Of vortices and vortical layers: An overview. Vortex Structure and Dynamics, A. Maurel and P. Petitjeans, Eds., Springer, 40–123.

    • Crossref
    • Export Citation
  • Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87, 761771, https://doi.org/10.1017/S0022112078001871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1979: A study in tornado-like vortex dynamics. J. Atmos. Sci., 36, 140155, https://doi.org/10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 5984, https://doi.org/10.1146/annurev-fluid-011212-140639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, A., and G. Subramanian, 2014: Linearized oscillations of a vortex column: The singular eigenfunctions. J. Fluid Phys., 741, 404460, https://doi.org/10.1017/jfm.2013.666.

    • Search Google Scholar
    • Export Citation
  • Ruith, M. R., P. Chen, E. Meiburg, and T. Maxworthy, 2003: Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation. J. Fluid Mech., 486, 331378, https://doi.org/10.1017/S0022112003004749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rukes, L., M. Sieber, C. O. Paschereit, and K. Oberleithner, 2017: Transient evolution of the global mode in turbulent swirling jets: Experiments and modal stability analysis. Eur. J. Mech. B/Fluids, 65, 98106, https://doi.org/10.1016/j.euromechflu.2017.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1992: Vortex Dynamics. Cambridge, 311 pp.

  • Saint-Exupéry, A., 1946: Le Petit Prince. Gallimard, 93 pp.

  • Sarpkaya, T., 1995: Turbulent vortex breakdown. Phys. Fluids, 7, 23012303, https://doi.org/10.1063/1.868742.

  • Schenkman, A. D., M. Xue, and D. T. Dawson, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, https://doi.org/10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P. J., 2007: Nonmodal stability theory. Annu. Rev. Fluid. Mech., 39, 129–162, https://doi.org/10.1146/annurev.fluid.38.050304.092139.

    • Crossref
    • Export Citation
  • Schmid, P. J., D. S. Henningson, M. R. Khorrami, and M. R. Malik, 1993: A study of eigenvalue sensitivity for hydrodynamic stability operators. Theor. Comput. Fluid Dyn., 4, 227240, https://doi.org/10.1007/BF00417929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Y. Hancock, 2016: Contrail lobes or mamma? The importance of correct terminology. Weather, 71, 203209, https://doi.org/10.1002/wea.2765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., 2001a: A centrifugal wave solution of the Euler and Navier-Stokes equations. Z. Angew. Math. Phys., 52, 913923, https://doi.org/10.1007/PL00001587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., 2001b: Flow of an inviscid rotating liquid into an elevated sink. Quart. J. Appl. Math., 54, 243256, https://doi.org/10.1093/qjmam/54.2.243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 143, 43054330, https://doi.org/10.1175/MWR-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys., 20, 953964, https://doi.org/10.1029/RG020i004p00953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, A., and J. J. McGuirk, 2008: Vortex breakdown in swirling fuel injector flows. J. Eng. Gas Turbines Power, 130, 021503, https://doi.org/10.1115/1.2799530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, H. B., 1956: Rotating fluids. Surveys in Mechanics, G. K. Batchelor and R. M. Davies, Eds., Akademie, 139–161.

  • Squire, H. B., 1960: Analysis of the “vortex breakdown” phenomenon. Part I. Department of Imperial College, London, Rep. 102, 379 pp.

  • Stein, S., and M. Wysession, 2003: An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell Publishing, 498 pp.

  • Strutt, J. W. L. R., 1902: Some applications of photography. Scientific Papers, Vol. III, Cambridge University Press, 441–451.

    • Crossref
    • Export Citation
  • Theofilis, V., 2003: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci., 39, 249315, https://doi.org/10.1016/S0376-0421(02)00030-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theofilis, V., 2011: Global linear instability. Annu. Rev. Fluid Mech., 43, 319352, https://doi.org/10.1146/annurev-fluid-122109-160705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. W. L. K., 1867: On vortex atoms. London Edinburgh Dublin Philos. Mag. J. Sci., 34, 1524, https://doi.org/10.1080/14786446708639836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. W. L. K., 1879: On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh, 10, 92100, https://doi.org/10.1017/S0370164600043467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. W. L. K., 1880: Vibrations of a columnar vortex. Philos. Mag., 10, 155168, https://doi.org/10.1080/14786448008626912.

  • Trapp, R. J., 2000: A clarification of vortex breakdown and tornadogenesis. Mon. Wea. Rev., 128, 888895, https://doi.org/10.1175/1520-0493(2000)128<0888:ACOVBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanierschot, M., 2017: On the dynamics of the transition to vortex breakdown in axisymmetric inviscid swirling flows. Eur. J. Mech. B/Fluids, 65, 6569, https://doi.org/10.1016/j.euromechflu.2017.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Helmholtz, H., 1858: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Angew. Math., 55, 2555, https://doi.org/10.1515/crll.1858.55.25.

    • Search Google Scholar
    • Export Citation
  • Walko, R., and R. Gall, 1984: A two-dimensional linear stability analysis of the multiple vortex phenomenon. J. Atmos. Sci., 41, 34563471, https://doi.org/10.1175/1520-0469(1984)041<3456:ATDLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 2003: Kelvin waves. Encyclopedia of Atmospheric Sciences, J. Holton, Ed., Academic Press, 1062–1067.

    • Crossref
    • Export Citation
  • Wang, S., and Z. Rusak, 1997: The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech., 340, 177223, https://doi.org/10.1017/S0022112097005272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 11941204, https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 9901006, https://doi.org/10.1175/2011JAS3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J.-Z., H.-Y. Ma, and M.-D. Zhou, 2006: Vorticity and Vortex Dynamics. Springer, 776 pp.

All Time Past Year Past 30 Days
Abstract Views 254 254 25
Full Text Views 89 89 19
PDF Downloads 107 107 16

Centrifugal Waves in Tornado-Like Vortices: Kelvin’s Solutions and Their Applications to Multiple-Vortex Development and Vortex Breakdown

View More View Less
  • 1 a Department of Geosciences, Texas Tech University, Lubbock, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

About 140 years ago, Lord Kelvin derived the equations describing waves that travel along the axis of concentrated vortices such as tornadoes. Although Kelvin’s vortex waves, also known as centrifugal waves, feature prominently in the engineering and fluid dynamics literature, they have not attracted as much attention in the field of atmospheric science. To remedy this circumstance, Kelvin’s elegant derivation is retraced, and slightly generalized, to obtain solutions for a hierarchy of vortex flows that model basic features of tornado-like vortices. This treatment seeks to draw attention to the important work that Lord Kelvin did in this field, and reveal the remarkably rich structure and dynamics of these waves. Kelvin’s solutions help explain the vortex breakdown phenomenon routinely observed in modeled tornadoes, and it is shown that his work is compatible with the widely used criticality condition put forth by Benjamin in 1962. Moreover, it is demonstrated that Kelvin’s treatment, with the slight generalization, includes unstable wave solutions that have been invoked to explain some aspects of the formation of multiple-vortex tornadoes. The analysis of the unstable solutions also forms the basis for determining whether, for example, an axisymmetric or a spiral vortex breakdown occurs. Kelvin’s work thus helps explain some of the visible features of tornado-like vortices.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johannes M. L. Dahl, johannes.dahl@ttu.edu

Abstract

About 140 years ago, Lord Kelvin derived the equations describing waves that travel along the axis of concentrated vortices such as tornadoes. Although Kelvin’s vortex waves, also known as centrifugal waves, feature prominently in the engineering and fluid dynamics literature, they have not attracted as much attention in the field of atmospheric science. To remedy this circumstance, Kelvin’s elegant derivation is retraced, and slightly generalized, to obtain solutions for a hierarchy of vortex flows that model basic features of tornado-like vortices. This treatment seeks to draw attention to the important work that Lord Kelvin did in this field, and reveal the remarkably rich structure and dynamics of these waves. Kelvin’s solutions help explain the vortex breakdown phenomenon routinely observed in modeled tornadoes, and it is shown that his work is compatible with the widely used criticality condition put forth by Benjamin in 1962. Moreover, it is demonstrated that Kelvin’s treatment, with the slight generalization, includes unstable wave solutions that have been invoked to explain some aspects of the formation of multiple-vortex tornadoes. The analysis of the unstable solutions also forms the basis for determining whether, for example, an axisymmetric or a spiral vortex breakdown occurs. Kelvin’s work thus helps explain some of the visible features of tornado-like vortices.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johannes M. L. Dahl, johannes.dahl@ttu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 12.41 MB)
Save