The Life Cycle of a Stationary Cloud Cluster during the Indian Summer Monsoon: A Microphysical Investigation Using Polarimetric C-Band Radar

Soumya Samanta aIndian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
bDepartment of Meteorology and Oceanography, College of Science and Technology, Andhra University, Visakhapatnam, India

Search for other papers by Soumya Samanta in
Current site
Google Scholar
PubMed
Close
,
P. Murugavel aIndian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India

Search for other papers by P. Murugavel in
Current site
Google Scholar
PubMed
Close
,
Dinesh Gurnule aIndian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India

Search for other papers by Dinesh Gurnule in
Current site
Google Scholar
PubMed
Close
,
Y. Jaya Rao aIndian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India

Search for other papers by Y. Jaya Rao in
Current site
Google Scholar
PubMed
Close
,
Jothiram Vivekanandan cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jothiram Vivekanandan in
Current site
Google Scholar
PubMed
Close
, and
Thara V. Prabha aIndian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India

Search for other papers by Thara V. Prabha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multiplatform observations of the life cycle of a tropical continental mesoscale cloud cluster (CC) during the Indian summer monsoon, which contributed more than ~70 mm of rainfall over the arid peninsular Indian region, are presented in this study. The CC was characterized by a deep warm cloud layer with isolated convective cells in the initiation phase, merging of several deep cumulus clouds (~6 km) during the mature phase, growing up to ~15 km with mixed-phase and ice-phase cloud microphysical processes. Throughout the life cycle of the CC, polarimetric radar analyses revealed size sorting of falling raindrops, growth of dendritic particles, riming, aggregation, the occurrence of a saggy bright band, etc. The formation of big raindrops is observed during the initial convective rain, associated with the melting of hail. The stratiform counterpart is primarily associated with aggregates, ice crystals, and melting snow, resulting in surface rainfall. Aggregates are found to be the spatially dominant hydrometeor followed by ice crystals. The presence of vertically oriented ice crystals indicates active cloud electrification processes during the spatial aggregation of convective clouds. The dominant microphysical processes and precipitation pathways are illustrated. The study forms a benchmark case for model intercomparisons and evaluations.

Significance Statement

Cloud clusters are responsible for a significant amount of precipitation throughout the world and often result in catastrophic rainfall events, which cause a severe threat to life and livelihood. Understanding the microphysical evolution during the life cycle of the cloud clusters is crucial for their accurate simulation/prediction in numerical models. The complete life cycle of a stationary tropical continental mesoscale cloud cluster during the Indian summer monsoon is presented here using multiplatform observations. The study portrays the chronological sequence of events, and provides insights into the microphysical processes and pathways of precipitation during each phase of its life cycle.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: pmvelu@tropmet.res.in

Abstract

Multiplatform observations of the life cycle of a tropical continental mesoscale cloud cluster (CC) during the Indian summer monsoon, which contributed more than ~70 mm of rainfall over the arid peninsular Indian region, are presented in this study. The CC was characterized by a deep warm cloud layer with isolated convective cells in the initiation phase, merging of several deep cumulus clouds (~6 km) during the mature phase, growing up to ~15 km with mixed-phase and ice-phase cloud microphysical processes. Throughout the life cycle of the CC, polarimetric radar analyses revealed size sorting of falling raindrops, growth of dendritic particles, riming, aggregation, the occurrence of a saggy bright band, etc. The formation of big raindrops is observed during the initial convective rain, associated with the melting of hail. The stratiform counterpart is primarily associated with aggregates, ice crystals, and melting snow, resulting in surface rainfall. Aggregates are found to be the spatially dominant hydrometeor followed by ice crystals. The presence of vertically oriented ice crystals indicates active cloud electrification processes during the spatial aggregation of convective clouds. The dominant microphysical processes and precipitation pathways are illustrated. The study forms a benchmark case for model intercomparisons and evaluations.

Significance Statement

Cloud clusters are responsible for a significant amount of precipitation throughout the world and often result in catastrophic rainfall events, which cause a severe threat to life and livelihood. Understanding the microphysical evolution during the life cycle of the cloud clusters is crucial for their accurate simulation/prediction in numerical models. The complete life cycle of a stationary tropical continental mesoscale cloud cluster during the Indian summer monsoon is presented here using multiplatform observations. The study portrays the chronological sequence of events, and provides insights into the microphysical processes and pathways of precipitation during each phase of its life cycle.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: pmvelu@tropmet.res.in
Save
  • Anagnostou, E. N., 2004: A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteor. Appl., 11, 291300, https://doi.org/10.1017/S1350482704001409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, B., T. V. Prabha, Y. J. Rao, T. Kiran, G. Dinesh, K. Chakravarty, S. M. Sonbawne, and M. Rajeevan, 2017: Potential of collocated radiometer and wind profiler observations for monsoon studies. Atmos. Res., 194, 1726, https://doi.org/10.1016/j.atmosres.2017.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze, 2014: Precipitation hydrometeor type relative to the mesoscale airflow in mature oceanic deep convection of the Madden–Julian Oscillation. J. Geophys. Res. Atmos., 119, 13 99014 014, https://doi.org/10.1002/2014JD022241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, https://doi.org/10.1175/JAMC-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Caine, S., C. Jakob, S. Siems, and P. May, 2009: Objective classification of precipitating convective regimes using a weather radar in Darwin, Australia. Mon. Wea. Rev., 137, 15851600, https://doi.org/10.1175/2008MWR2532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, https://doi.org/10.1016/j.atmosres.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dalal, S., D. Lohar, S. Sarkar, I. Sadhukhan, and G. C. Debnath, 2012: Organizational modes of squall-type mesoscale convective systems during premonsoon season over eastern India. Atmos. Res., 106, 120138, https://doi.org/10.1016/j.atmosres.2011.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751094, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, https://doi.org/10.1175/2009JTECHA1208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 1989: Convection over tropical Africa and the Atlantic Ocean during northern summer. Part I: Interannual and diurnal variations. Mon. Wea. Rev., 117, 27822799, https://doi.org/10.1175/1520-0493(1989)117<2782:COTAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, https://doi.org/10.1175/2008MWR2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evaristo, R., G. Scialom, N. Viltard, and Y. Lemaître, 2010: Polarimetric signatures and hydrometeor classification of West African squall lines. Quart. J. Roy. Meteor. Soc., 136, 272288, https://doi.org/10.1002/qj.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze, S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederick, K., and C. Schumacher, 2008: Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Mon. Wea. Rev., 136, 206222, https://doi.org/10.1175/2007MWR2068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayatri, K., S. Patade, and T. V. Prabha, 2017: Aerosol–cloud interaction in deep convective clouds over the Indian Peninsula using spectral (bin) microphysics. J. Atmos. Sci., 74, 31453166, https://doi.org/10.1175/JAS-D-17-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gematronik, 2007: Dual-Polarization Weather Radar Handbook. 2nd ed. Selex-SI Gematronik, 163 pp.

  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, https://doi.org/10.1109/36.739161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, and A. V. Ryzhkov, 2018: A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. J. Appl. Meteor. Climatol., 57, 3150, https://doi.org/10.1175/JAMC-D-17-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., and M. Rajeevan, 2007: Trends in the rainfall pattern over India. Int. J. Climatol., 28, 14531469, https://doi.org/10.1002/joc.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., P. Ma, and B. Singh, 2014: Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice. J. Adv. Model. Earth Syst., 6, 12711287, https://doi.org/10.1002/2014MS000334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guy, N., X. Zeng, S. A. Rutledge, and W. K. Tao, 2013: Comparing the convective structure and microphysics in two Sahelian mesoscale convective systems: Radar observations and CRM simulations. Mon. Wea. Rev., 141, 582601, https://doi.org/10.1175/MWR-D-12-00053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., 2019: Convective self-aggregation as a cold pool-driven critical phenomenon. Geophys. Res. Lett., 46, 40174028, https://doi.org/10.1029/2018GL081817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., B. Meyer, and S. B. Nissen, 2020: Diurnal self-aggregation. npj Climate Atmos. Sci., 3, 30, https://doi.org/10.1038/s41612-020-00132-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., and R. Houze, 2016: Atmospheric system research treatment of convection in next-generation climate models: Challenges and opportunities. Workshop Report, Tech. Rep. DOE/SC-ASR-16-002, 49 pp.

    • Crossref
    • Export Citation
  • Houze, R. A., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 17.1–17.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

    • Crossref
    • Export Citation
  • Houze, R. A., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Adv. Geophys., 24, 225315, https://doi.org/10.1016/S0065-2687(08)60521-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, a 3 June 2019, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

    • Crossref
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, T. S. L’ecuyer, and A. J. Newman, 2010: Diurnal cycle of convection during the 2004 North American Monsoon Experiment. J. Climate, 23, 10601078, https://doi.org/10.1175/2009JCLI3275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15, 871886, https://doi.org/10.1175/1520-0426(1998)015<0871:TBNCBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013: On the effects of large-scale environment and surface types on convective cloud characteristics over Darwin, Australia. Mon. Wea. Rev., 141, 13581374, https://doi.org/10.1175/MWR-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1993: Mesoscale convective complexes over the Indian Monsoon region. J. Climate, 6, 911919, https://doi.org/10.1175/1520-0442(1993)006<0911:MCCOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lal, M., and Coauthors, 2001: Future climate change: Implications for Indian summer monsoon and its variability. Curr. Sci., 81, 11961207.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, and R. Cifelli, 2010: Polarimetric radar observations of convection in northwestern Mexico during the North American Monsoon Experiment. J. Hydrometeor., 11, 13451357, https://doi.org/10.1175/2010JHM1247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., B. Dolan, N. Guy, C. Gerlach, and J. Hardin, 2019: CSU-Radarmet/CSU_RadarTools: CSU_RadarTools v1.3, version v1.3. Zenodo, accessed 1 February 2020, https://doi.org/10.5281/zenodo.2562063.

    • Crossref
    • Export Citation
  • Leary, C. A., and R. A. Houze, 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, https://doi.org/10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madhulatha, A., and M. Rajeevan, 2018: Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India. Meteor. Atmos. Phys., 130, 4965, https://doi.org/10.1007/s00703-017-0502-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, https://doi.org/10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., C. N. Long, and A. Protat, 2012: The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin, Australia). J. Climate, 25, 53095326, https://doi.org/10.1175/JCLI-D-11-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos., 120, 12 64412 655, https://doi.org/10.1002/2015JD023884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murthy, B. S., R. Latha, and H. Madhuparna, 2018: WRF simulation of a severe hailstorm over Baramati: A study into the space–time evolution. Meteor. Atmos. Phys., 130, 153167, https://doi.org/10.1007/s00703-017-0516-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patade, S., T. V. Prabha, D. Axisa, K. Gayatri, and A. Heymsfield, 2015: Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX. J. Geophys. Res. Atmos., 120, 10 41810 440, https://doi.org/10.1002/2015JD023375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patade, S., S. Shete, N. Malap, G. Kulkarni, and T. V. Prabha, 2016: Observational and simulated cloud microphysical features of rain formation in the mixed phase clouds observed during CAIPEEX. Atmos. Res., 169, 3245, https://doi.org/10.1016/j.atmosres.2015.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patade, S., and Coauthors, 2019: Role of liquid phase in the development of ice phase in monsoon clouds: Aircraft observations and numerical simulations. Atmos. Res., 229, 157174, https://doi.org/10.1016/j.atmosres.2019.06.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze, and S. R. Brodzik, 2016: Rainfall-type categorization of radar echoes using polar coordinate reflectivity data. J. Atmos. Oceanic Technol., 33, 523538, https://doi.org/10.1175/JTECH-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., B. N. Goswami, B. S. Murthy, and J. R. Kulkarni, 2011a: Nocturnal low-level jet and “atmospheric streams” over the rain shadow region of Indian Western Ghats. Quart. J. Roy. Meteor. Soc., 137, 12731287, https://doi.org/10.1002/qj.818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Khain, R. S. Maheshkumar, G. Pandithurai, J. R. Kulkarni, M. Konwar, and B. N. Goswami, 2011b: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 18821901, https://doi.org/10.1175/2011JAS3707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., and C. Lin, 2015: Evaluation of double-moment representation of ice hydrometeors in bulk microphysical parameterization: Comparison between WRF numerical simulations and UND-Citation data during MC3E. Geosci. Lett., 2, 11, https://doi.org/10.1186/s40562-015-0028-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., C. Lin, X. Dong, and S. K. Krueger, 2019: Sensitivity of numerical simulations of a mesoscale convective system to ice hydrometeors in bulk microphysical parameterization. Pure Appl. Geophys., 176, 20972120, https://doi.org/10.1007/s00024-018-1787-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., P. Rohini, K. Niranjan Kumar, J. Srinivasan, and C. K. Unnikrishnan, 2013: A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Climate Dyn., 40, 637650, https://doi.org/10.1007/s00382-012-1374-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., T. Fiolleau, and D. Bouniol, 2017: A simple model of the life cycle of mesoscale convective systems cloud shield in the tropics. J. Climate, 30, 42834298, https://doi.org/10.1175/JCLI-D-16-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, https://doi.org/10.1175/2010JHM1289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Routray, A., U. C. Mohanty, D. Niyogi, S. R. H. Rizvi, and K. K. Osuri, 2010: Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteor. Atmos. Phys., 106, 107125, https://doi.org/10.1007/s00703-009-0054-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., S. A. Rutledge, and T. J. Lang, 2012: Investigation of microphysical processes occurring in organized convection during NAME. Mon. Wea. Rev., 140, 21682187, https://doi.org/10.1175/MWR-D-11-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, https://doi.org/10.1175/JTECH2034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, https://doi.org/10.1175/BAMS-86-6-809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samanta, S., and Coauthors, 2020: Case study of a convective cluster over the rain shadow region of Western Ghats using multi-platform observations and WRF model. Pure Appl. Geophys., 177, 29312957, https://doi.org/10.1007/s00024-019-02360-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, https://doi.org/10.1175/JAMC-D-12-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., S. N. Stevenson, and C. R. Williams, 2015: Vertical motions of the tropical convective cloud spectrum over Darwin, Australia. Quart. J. Roy. Meteor. Soc., 141, 22772288, https://doi.org/10.1002/qj.2520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scipión, D. E., R. Mott, M. Lehning, M. Schneebeli, and A. Berne, 2013: Seasonal small-scale spatial variability in alpine snowfall and snow accumulation. Water Resour. Res., 49, 14461457, https://doi.org/10.1002/wrcr.20135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sindhu, K. D., and G. S. Bhat, 2018: Characteristics of monsoonal precipitating cloud systems over the Indian subcontinent derived from weather radar data. Quart. J. Roy. Meteor. Soc., 144, 17421760, https://doi.org/10.1002/qj.3328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdés-Manzanilla, A., and V. L. Barradas Miranda, 2012: Mesoscale convective systems during NAME. Atmósfera, 25, 155170.

  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, https://doi.org/10.1175/JAS-D-12-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze, 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., and F. Fabry, 2018: Contrasting polarimetric observations of stratiform riming and nonriming events. J. Appl. Meteor. Climatol., 57, 457476, https://doi.org/10.1175/JAMC-D-16-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D., and Coauthors, 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 21472159, https://doi.org/10.1175/MWR-D-17-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., R. Evaristo, C. Simmer, J. Handwerker, and S. Trömel, 2016: Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE. Atmos. Chem. Phys., 16, 71057116, https://doi.org/10.5194/acp-16-7105-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 315 2 0
Full Text Views 690 410 28
PDF Downloads 678 357 28