Energetics of Interactions between African Easterly Waves and Convectively Coupled Kelvin Waves

Rama Sesha Sridhar Mantripragada aDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Rama Sesha Sridhar Mantripragada in
Current site
Google Scholar
PubMed
Close
,
C. J. Schreck III aDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
bNorth Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina

Search for other papers by C. J. Schreck III in
Current site
Google Scholar
PubMed
Close
, and
Anantha Aiyyer aDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Anantha Aiyyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Perturbation kinetic and available energy budgets are used to explore how convectively coupled equatorial Kelvin waves (KWs) impact African easterly wave (AEW) activity. The convective phase of the Kelvin wave increases the African easterly jet’s meridional shear, thus enhancing the barotropic energy conversions, leading to intensification of southern track AEWs perturbation kinetic energy. In contrast, the barotropic energy conversion is reduced in the suppressed phase of KW. Baroclinic energy conversion of the southern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. AEWs in the convective phase of a Kelvin wave have stronger perturbation available potential energy generation by diabatic heating and stronger baroclinic overturning circulations than in the suppressed phase of a Kelvin wave. These differences suggest that southern track AEWs within the convective phase of Kelvin waves have more vigorous convection than in the suppressed phase of Kelvin waves. Barotropic energy conversion of the northern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. The convective phase of the Kelvin wave increases the lower-tropospheric meridional temperature gradient north of the African easterly jet, thus enhancing the baroclinic energy conversion, leading to intensification of northern track AEWs perturbation kinetic energy. In contrast, the baroclinic energy conversion is reduced in the suppressed phase of KW. These results provide a physical basis for the modulation of AEWs by Kelvin waves arriving from upstream.

Mantripragada’s current affiliation: Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. S. S. Mantripragada, rmantrip@gmu.edu

Abstract

Perturbation kinetic and available energy budgets are used to explore how convectively coupled equatorial Kelvin waves (KWs) impact African easterly wave (AEW) activity. The convective phase of the Kelvin wave increases the African easterly jet’s meridional shear, thus enhancing the barotropic energy conversions, leading to intensification of southern track AEWs perturbation kinetic energy. In contrast, the barotropic energy conversion is reduced in the suppressed phase of KW. Baroclinic energy conversion of the southern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. AEWs in the convective phase of a Kelvin wave have stronger perturbation available potential energy generation by diabatic heating and stronger baroclinic overturning circulations than in the suppressed phase of a Kelvin wave. These differences suggest that southern track AEWs within the convective phase of Kelvin waves have more vigorous convection than in the suppressed phase of Kelvin waves. Barotropic energy conversion of the northern track AEWs is not significantly different between Kelvin waves’ convective and suppressed phases. The convective phase of the Kelvin wave increases the lower-tropospheric meridional temperature gradient north of the African easterly jet, thus enhancing the baroclinic energy conversion, leading to intensification of northern track AEWs perturbation kinetic energy. In contrast, the baroclinic energy conversion is reduced in the suppressed phase of KW. These results provide a physical basis for the modulation of AEWs by Kelvin waves arriving from upstream.

Mantripragada’s current affiliation: Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. S. S. Mantripragada, rmantrip@gmu.edu
Save
  • Alaka, G. J., and E. D. Maloney, 2012: The influence of the MJO on upstream precursors to African easterly waves. J. Climate, 25, 32193236, https://doi.org/10.1175/JCLI-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., and E. D. Maloney, 2014: The intraseasonal variability of African easterly wave energetics. J. Climate, 27, 65596580, https://doi.org/10.1175/JCLI-D-14-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and R. J. Pasch, 1992: Atlantic tropical systems of 1991. Mon. Wea. Rev., 120, 26882696, https://doi.org/10.1175/1520-0493(1992)120<2688:ATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, https://doi.org/10.1175/JAS-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-B., 1993: Impact of desert environment on the genesis of African wave disturbances. J. Atmos. Sci., 50, 21372145, https://doi.org/10.1175/1520-0469(1993)050<2137:IODEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2006: Characteristics of African easterly waves depicted by ECMWF reanalyses for 1991–2000. Mon. Wea. Rev., 134, 35393566, https://doi.org/10.1175/MWR3259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and A. Aiyyer, 2013a: Energy dispersion in African easterly waves. J. Atmos. Sci., 70, 130145, https://doi.org/10.1175/JAS-D-12-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, M., and A. Aiyyer, 2013b: The genesis of African easterly waves by upstream development. J. Atmos. Sci., 70, 34923512, https://doi.org/10.1175/JAS-D-12-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, https://doi.org/10.1029/2002JD002816.

    • Crossref
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307–314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Crossref
    • Export Citation
  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171, https://doi.org/10.2151/jmsj1965.60.1_156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483, https://doi.org/10.1175/JCLI4139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 13111327, https://doi.org/10.1175/MWR2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., J. M. Fritsch, and A. J. Negri, 1999: Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data. J. Appl. Meteor., 38, 957964, https://doi.org/10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. E. Carbone, and V. Levizzani, 2011: Cycles and propagation of deep convection over equatorial Africa. Mon. Wea. Rev., 139, 28322853, https://doi.org/10.1175/2011MWR3500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. D. Bell, W. M. Gray, and S. B. Goldenberg, 1998: The extremely active 1995 Atlantic hurricane season: Environmental conditions and verification of seasonal forecasts. Mon. Wea. Rev., 126, 11741193, https://doi.org/10.1175/1520-0493(1998)126<1174:TEAAHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, S., N. M. J. Hall, and G. N. Kiladis, 2010: A climatological study of transient-mean-flow interactions over West Africa. Quart. J. Roy. Meteor. Soc., 136 (Suppl. 1), 397410, https://doi.org/10.1002/qj.474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, https://doi.org/10.1002/qj.49712757208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, https://doi.org/10.1175/JCLI3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, A. R. Aiyyer, and G. N. Kiladis, 2008: Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. J. Climate, 21, 66496667, https://doi.org/10.1175/2008JCLI2008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., and J.-P. Duvel, 2008: Synoptic wave perturbations and convective systems over equatorial Africa. J. Climate, 21, 63726388, https://doi.org/10.1175/2008JCLI2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 334342, https://doi.org/10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., and A. Aiyyer, 2020: The potential vorticity structure and dynamics of African easterly waves. J. Atmos. Sci., 77, 871890, https://doi.org/10.1175/JAS-D-19-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, and J. Dylan White, 2020: African easterly wave dynamics in convection-permitting simulations: Rotational stratiform instability as a conceptual model. J. Adv. Model. Earth Syst., 12, e2019MS001706, https://doi.org/10.1029/2019MS001706.

    • Crossref
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2014: Energetics of east Pacific easterly waves during intraseasonal events. J. Climate, 27, 76037621, https://doi.org/10.1175/JCLI-D-14-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlueter, A., A. H. Fink, P. Knippertz, and P. Vogel, 2019: A systematic comparison of tropical waves over northern Africa. Part I: Influence on rainfall. J. Climate, 32, 15011523, https://doi.org/10.1175/JCLI-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., III, 2015: Kelvin waves and tropical cyclogenesis: A global survey. Mon. Wea. Rev., 143, 39964011, https://doi.org/10.1175/MWR-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., III, L. Shi, J. P. Kossin, and J. J. Bates, 2013: Identifying the MJO, equatorial waves, and their impacts using 32 years of HIRS upper-tropospheric water vapor. J. Climate, 26, 14181431, https://doi.org/10.1175/JCLI-D-12-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, https://doi.org/10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543, https://doi.org/10.1175/1520-0469(2003)060<0526:EFOCCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomassini, L., D. J. Parker, A. Stirling, C. Bain, C. Senior, and S. Milton, 2017: The interaction between moist diabatic processes and the atmospheric circulation in African easterly wave propagation. Quart. J. Roy. Meteor. Soc., 143, 32073227, https://doi.org/10.1002/qj.3173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., and C. D. Thorncroft, 2013: The role of convectively coupled atmospheric Kelvin waves on African easterly wave activity. Mon. Wea. Rev., 141, 19101924, https://doi.org/10.1175/MWR-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722, https://doi.org/10.1175/MWR-D-10-05028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, https://doi.org/10.1175/MWR-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 314 1 0
Full Text Views 289 165 12
PDF Downloads 243 106 9