Learning Forecasts of Rare Stratospheric Transitions from Short Simulations

Justin Finkel aCommittee on Computational and Applied Mathematics, University of Chicago, Chicago, Illinois

Search for other papers by Justin Finkel in
Current site
Google Scholar
PubMed
Close
,
Robert J. Webber bDepartment of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Robert J. Webber in
Current site
Google Scholar
PubMed
Close
,
Edwin P. Gerber cCourant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Edwin P. Gerber in
Current site
Google Scholar
PubMed
Close
,
Dorian S. Abbot dDepartment of Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Dorian S. Abbot in
Current site
Google Scholar
PubMed
Close
, and
Jonathan Weare cCourant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Jonathan Weare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We address the problem of forecasting rare events in a prototypical example, sudden stratospheric warmings (SSWs). Approximately once every other winter, the boreal stratospheric polar vortex rapidly breaks down, shifting midlatitude surface weather patterns for months. We focus on two key quantities of interest: the probability of an SSW occurring, and the expected lead time if it does occur, as functions of initial condition. These optimal forecasts concretely measure the event’s progress. Direct numerical simulation can estimate them in principle but is prohibitively expensive in practice: each rare event requires a long integration to observe, and the cost of each integration grows with model complexity. We describe an alternative approach using integrations that are short compared to the time scale of the warming event. We compute the probability and lead time efficiently by solving equations involving the transition operator, which encodes all information about the dynamics. We relate these optimal forecasts to a small number of interpretable physical variables, suggesting optimal measurements for forecasting. We illustrate the methodology on a prototype SSW model developed by Holton and Mass and modified by stochastic forcing. While highly idealized, this model captures the essential nonlinear dynamics of SSWs and exhibits the key forecasting challenge: the dramatic separation in time scales between a single event and the return time between successive events. Our methodology is designed to fully exploit high-dimensional data from models and observations, and has the potential to identify detailed predictors of many complex rare events in meteorology.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin Finkel, jfinkel@uchicago.edu

Abstract

Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We address the problem of forecasting rare events in a prototypical example, sudden stratospheric warmings (SSWs). Approximately once every other winter, the boreal stratospheric polar vortex rapidly breaks down, shifting midlatitude surface weather patterns for months. We focus on two key quantities of interest: the probability of an SSW occurring, and the expected lead time if it does occur, as functions of initial condition. These optimal forecasts concretely measure the event’s progress. Direct numerical simulation can estimate them in principle but is prohibitively expensive in practice: each rare event requires a long integration to observe, and the cost of each integration grows with model complexity. We describe an alternative approach using integrations that are short compared to the time scale of the warming event. We compute the probability and lead time efficiently by solving equations involving the transition operator, which encodes all information about the dynamics. We relate these optimal forecasts to a small number of interpretable physical variables, suggesting optimal measurements for forecasting. We illustrate the methodology on a prototype SSW model developed by Holton and Mass and modified by stochastic forcing. While highly idealized, this model captures the essential nonlinear dynamics of SSWs and exhibits the key forecasting challenge: the dramatic separation in time scales between a single event and the return time between successive events. Our methodology is designed to fully exploit high-dimensional data from models and observations, and has the potential to identify detailed predictors of many complex rare events in meteorology.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin Finkel, jfinkel@uchicago.edu
Save
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, T., J. R. Cressman, Z. Gregurić-Ferenček, and T. Sauer, 2013: Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Syst., 12, 618649, https://doi.org/10.1137/12088183X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, T., D. Giannakis, and J. Harlim, 2015: Nonparametric forecasting of low-dimensional dynamical systems. Phys. Rev., 91E, 032915, https://doi.org/10.1103/PhysRevE.91.032915.

    • Search Google Scholar
    • Export Citation
  • Bilionis, I., 2016: Probabilistic solvers for partial differential equations. arXiv:1607.03526, 9 pp., https://arxiv.org/pdf/1607.03526.pdf.

  • Binzel, R. P., 2000: The Torino impact hazard scale. Planet. Space Sci., 48, 297303, https://doi.org/10.1016/S0032-0633(00)00006-4.

  • Birner, T., and P. D. Williams, 2008: Sudden stratospheric warmings as noise-induced transitions. J. Atmos. Sci., 65, 33373343, https://doi.org/10.1175/2008JAS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, T., and L. Zanna, 2019: Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst., 11, 376399, https://doi.org/10.1029/2018MS001472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., J. Laurie, and O. Zaboronski, 2011: Control and instanton trajectories for random transitions in turbulent flows. J. Phys. Conf. Ser., 318, 022041, https://doi.org/10.1088/1742-6596/318/2/022041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., J. Laurie, and O. Zaboronski, 2014: Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations. J. Stat. Phys., 156, 10661092, https://doi.org/10.1007/s10955-014-1052-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., J. Rolland, and E. Simonnet, 2019a: Rare event algorithm links transitions in turbulent flows with activated nucleations. Phys. Rev. Lett., 122, 074502, https://doi.org/10.1103/PhysRevLett.122.074502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., J. Rolland, and J. Wouters, 2019b: Rare event sampling methods. Chaos, 29, 080402, https://doi.org/10.1063/1.5120509.

  • Bowman, G. R., V. S. Pande, and F. Noé, 2013: An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine and Biology, Vol. 797, Springer Science & Business Media, 139 pp.

    • Crossref
    • Export Citation
  • Carleo, G., and M. Troyer, 2017: Solving the quantum many-body problem with artificial neural networks. Science, 355, 602606, https://doi.org/10.1126/science.aag2302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 1205–1216, https://doi.org/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Crossref
    • Export Citation
  • Chattopadhyay, A., E. Nabizadeh, and P. Hassanzadeh, 2020: Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst., 12, e2019MS001958, https://doi.org/10.1029/2019MS001958.

    • Crossref
    • Export Citation
  • Chattopadhyay, A., M. Mustafa, P. Hassanzadeh, E. Bach, and K. Kashinath, 2021: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving spatial transformers in a case study with ERA5. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-71.

    • Search Google Scholar
    • Export Citation
  • Chen, N., and A. J. Majda, 2020: Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series. Chaos, 30, 033101, https://doi.org/10.1063/1.5122199.

    • Crossref
    • Export Citation
  • Chen, N., D. Giannakis, R. Herbei, and A. J. Majda, 2014: An MCMC algorithm for parameter estimation in signals with hidden intermittent instability. SIAM/ASA J. Uncertainty Quantif., 2, 647–669, https://doi.org/10.1137/130944977.

    • Crossref
    • Export Citation
  • Chodera, J. D., and F. Noé, 2014: Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol., 25, 135144, https://doi.org/10.1016/j.sbi.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chodera, J. D., W. C. Swope, J. W. Pitera, and K. A. Dill, 2006: Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model. Simul., 5, 12141226, https://doi.org/10.1137/06065146X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2000: Chaos, quasiperiodicity, and interannual variability: Studies of a stratospheric vacillation model. J. Atmos. Sci., 57, 31613173, https://doi.org/10.1175/1520-0469(2000)057<3161:CQAIVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., 2003: Regime transitions and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci., 60, 229–246, https://doi.org/10.1175/1520-0469(2003)060<0229:RTAHCI>2.0.CO;2.

    • Crossref
    • Export Citation
  • DelSole, T., and B. F. Farrell, 1995: A stochastically excited linear system as a model for quasigeostrophic turbulence: Analytic results for one- and two-layer fluids. J. Atmos. Sci., 52, 25312547, https://doi.org/10.1175/1520-0469(1995)052<2531:ASELSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dematteis, G., T. Grafke, and E. Vanden-Eijnden, 2018: Rogue waves and large deviations in deep sea. Proc. Natl. Acad. Sci. USA, 115, 855860, https://doi.org/10.1073/pnas.1710670115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dematteis, G., T. Grafke, M. Onorato, and E. Vanden-Eijnden, 2019: Experimental evidence of hydrodynamic instantons: The universal route to rogue waves. Phys. Rev. X, 9, 041057, https://doi.org/10.1103/PhysRevX.9.041057.

    • Crossref
    • Export Citation
  • Durrett, R., 2013: Probability: Theory and Examples. Cambridge University Press, 428 pp.

  • E, W., and E. Vanden-Eijnden, 2006: Towards a theory of transition paths. J. Stat. Phys., 123, 503, https://doi.org/10.1007/s10955-005-9003-9.

    • Crossref
    • Export Citation
  • E, W., and E. Vanden-Eijnden, 2010: Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem., 61, 391420, https://doi.org/10.1146/annurev.physchem.040808.090412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • E, W., T. Li, and E. Vanden-Eijnden, 2019: Applied Stochastic Analysis. Graduate Studies in Mathematics, Vol. 199, American Mathematical Society, 305 pp.

    • Crossref
    • Export Citation
  • Esler, J. G., and M. Mester, 2019: Noise-induced vortex-splitting stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 145, 476494, https://doi.org/10.1002/qj.3443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farazmand, M., and T. P. Sapsis, 2017: A variational approach to probing extreme events in turbulent dynamical systems. Sci. Adv., 3, e1701533, https://doi.org/10.1126/sciadv.1701533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finkel, J., D. S. Abbot, and J. Weare, 2020: Path properties of atmospheric transitions: Illustration with a low-order sudden stratospheric warming model. J. Atmos. Sci., 77, 2327–2347, https://doi.org/10.1175/JAS-D-19-0278.1.

    • Crossref
    • Export Citation
  • Fitzsimmons, P., and J. Pitman, 1999: Kac’s moment formula and the Feynman–Kac formula for additive functionals of a Markov process. Stochastic Process. Appl., 79, 117134, https://doi.org/10.1016/S0304-4149(98)00081-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., and A. J. Majda, 2006: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci., 63, 457479, https://doi.org/10.1175/JAS3633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannakis, D., and A. J. Majda, 2012: Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. USA, 109, 22222227, https://doi.org/10.1073/pnas.1118984109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannakis, D., A. Kolchinskaya, D. Krasnov, and J. Schumacher, 2018: Koopman analysis of the long-term evolution in a turbulent convection cell. J. Fluid Mech., 847, 735767, https://doi.org/10.1017/jfm.2018.297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottwald, G. A., D. T. Crommelin, and C. L. E. Franzke, 2016: Stochastic climate theory. arXiv:1612.07474, 29 pp., https://arxiv.org/pdf/1612.07474.pdf.

  • Han, J., A. Jentzen, and W. E, 2018: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA, 115, 8505–8510, https://doi.org/10.1073/pnas.1718942115.

    • Crossref
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Helfmann, L., J. Heitzig, P. Koltai, J. Kurths, and C. Schütte, 2021: Statistical analysis of tipping pathways in agent-based models. arXiv:2103.02883, 28 pp., https://arxiv.org/pdf/2103.02883.pdf.

    • Crossref
    • Export Citation
  • Hoffman, R. N., J. M. Henderson, S. M. Leidner, C. Grassotti, and T. Nehrkorn, 2006: The response of damaging winds of a simulated tropical cyclone to finite-amplitude perturbations of different variables. J. Atmos. Sci., 63, 19241937, https://doi.org/10.1175/JAS3720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 22182225, https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karatzas, I., and S. E. Shreve, 1998: Brownian Motion and Stochastic Calculus. Springer, 470 pp.

    • Crossref
    • Export Citation
  • Kashinath, K., and Coauthors, 2021: Physics-informed machine learning: case studies for weather and climate modelling. Philos. Trans. Roy. Soc., A379, 20200093, https://doi.org/10.1098/rsta.2020.0093.

    • Crossref
    • Export Citation
  • Khoo, Y., J. Lu, and L. Ying, 2018: Solving for high-dimensional committor functions using artificial neural networks. Res. Math. Sci., 6, 1, https://doi.org/10.1007/s40687-018-0160-2.

    • Crossref
    • Export Citation
  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42, 433–471, https://doi.org/10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2.

    • Crossref
    • Export Citation
  • Li, H., Y. Khoo, Y. Ren, and L. Ying, 2020: A semigroup method for high dimensional committor functions based on neural network. arXiv:2012.06727, 21 pp., https://arxiv.org/pdf/2012.06727.pdf.

  • Li, Q., B. Lin, and W. Ren, 2019: Computing committor functions for the study of rare events using deep learning. J. Chem. Phys., 151, 054112, https://doi.org/10.1063/1.5110439.

    • Crossref
    • Export Citation
  • Lin, K. K., and F. Lu, 2021: Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism. J. Comput. Phys., 424, 109864, https://doi.org/10.1016/j.jcp.2020.109864.

    • Crossref
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Export Citation
  • Lorpaiboon, C., E. H. Thiede, R. J. Webber, J. Weare, and A. R. Dinner, 2020: Integrated variational approach to conformational dynamics: A robust strategy for identifying eigenfunctions of dynamical operators. J. Phys. Chem., B124, 9354–9364, https://doi.org/10.1021/acs.jpcb.0c06477.

    • Crossref
    • Export Citation
  • Lucarini, V., and A. Gritsun, 2020: A new mathematical framework for atmospheric blocking events. Climate Dyn., 54, 575598, https://doi.org/10.1007/s00382-019-05018-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucente, D., S. Duffner, C. Herbert, J. Rolland, and F. Bouchet, 2019: Machine learning of committor functions for predicting high impact climate events. Ninth Int. Workshop on Climate Informatics, Paris, France, École Normale Supérieure, https://hal.archives-ouvertes.fr/hal-02322370/document.

    • Crossref
    • Export Citation
  • Maiocchi, C. C., V. Lucarini, A. Gritsun, and G. Pavliotis, 2020: Unstable periodic orbits sampling in climate models. EGU General Assembly, EGU, Abstract 18823, https://doi.org/10.5194/egusphere-egu2020-18823.

    • Crossref
    • Export Citation
  • Majda, A. J., and D. Qi, 2018: Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems. SIAM Rev., 60, 491–549, https://doi.org/10.1137/16M1104664.

    • Crossref
    • Export Citation
  • Majda, A. J., I. Timofeyev, and E. Vanden Eijnden, 2001: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math., 54, 891974, https://doi.org/10.1002/cpa.1014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mardt, A., L. Pasuali, H. Wu, and F. Noé, 2018: Vampnets for deep learning of molecular kinetics. Nat. Commun., 9, 5, https://doi.org/10.1038/s41467-017-02388-1.

    • Crossref
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Export Citation
  • Metzner, P., C. Schutte, and E. Vanden-Eijnden, 2006: Illustration of transition path theory on a collection of simple examples. J. Chem. Phys., 125, 084110, https://doi.org/10.1063/1.2335447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzner, P., C. Schutte, and E. Vanden-Eijnden, 2009: Transition path theory for Markov jump processes. Multiscale Model. Simul., 7, 11921219, https://doi.org/10.1137/070699500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miron, P., F. Beron-Vera, L. Helfmann, and P. Koltai, 2021: Transition paths of marine debris and the stability of the garbage patches. Chaos, 31, 033101, https://doi.org/10.1063/5.0030535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohamad, M. A., and T. P. Sapsis, 2018: Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA, 115, 11 13811 143, https://doi.org/10.1073/pnas.1813263115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngwira, C. M., and Coauthors, 2013: Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Wea., 11, 671679, https://doi.org/10.1002/2013SW000990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noé, F., and S. Fischer, 2008: Transition networks for modeling the kinetics of conformational change in macromolecules. Curr. Opin. Struct. Biol., 18, 154162, https://doi.org/10.1016/j.sbi.2008.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noé, F., and C. Clementi, 2017: Collective variables for the study of long-time kinetics from molecular trajectories: Theory and methods. Curr. Opin. Struct. Biol., 43, 141147, https://doi.org/10.1016/j.sbi.2017.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noé, F., C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl, 2009: Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. USA, 106, 19 01119 016, https://doi.org/10.1073/pnas.0905466106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oksendal, B., 2003: Stochastic Differential Equations: An Introduction with Applications. Springer, 360 pp.

    • Crossref
    • Export Citation
  • Pande, V. S., K. Beauchamp, and G. R. Bowman, 2010: Everything you wanted to know about Markov state models but were afraid to ask. Methods, 52, 99–105, https://doi.org/10.1016/j.ymeth.2010.06.002.

    • Crossref
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Plotkin, D. A., R. J. Webber, M. E. O’Neill, J. Weare, and D. S. Abbot, 2019: Maximizing simulated tropical cyclone intensity with action minimization. J. Adv. Model. Earth Syst., 11, 863891, https://doi.org/10.1029/2018MS001419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porta Mana, P., and L. Zanna, 2014: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modell., 79, 120, https://doi.org/10.1016/j.ocemod.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragone, F., and F. Bouchet, 2020: Computation of extreme values of time averaged observables in climate models with large deviation techniques. J. Stat. Phys., 179, 1637–1665, https://doi.org/10.1007/s10955-019-02429-7.

    • Crossref
    • Export Citation
  • Ragone, F., J. Wouters, and F. Bouchet, 2018: Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Natl. Acad. Sci. USA, 115, 2429, https://doi.org/10.1073/pnas.1712645115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raissi, M., P. Perdikaris, and G. Karniadakis, 2019: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378, 686707, https://doi.org/10.1016/j.jcp.2018.10.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., J. Lawrence, and C. Cadavid, 2003: A simple model of stratospheric dynamics including solar variability. J. Climate, 16, 15931600, https://doi.org/10.1175/1520-0442-16.10.1593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabeerali, C. T., R. S. Ajayamohan, D. Giannakis, and A. J. Majda, 2017: Extraction and prediction of indices for monsoon intraseasonal oscillations: An approach based on nonlinear Laplacian spectral analysis. Climate Dyn., 49, 30313050, https://doi.org/10.1007/s00382-016-3491-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapsis, T. P., 2021: Statistics of extreme events in fluid flows and waves. Annu. Rev. Fluid Mech., 53, 85–111, https://doi.org/10.1146/annurev-fluid-030420-032810.

    • Crossref
    • Export Citation
  • Schaller, N., J. Sillmann, J. Anstey, E. M. Fischer, C. M. Grams, and S. Russo, 2018: Influence of blocking on northern European and western Russian heatwaves in large climate model ensembles. Environ. Res. Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55.

    • Crossref
    • Export Citation
  • Simonnet, E., J. Rolland, and F. Bouchet, 2021: Multistability and rare spontaneous transitions in barotropic β-plane turbulence. arXiv:2009.09913, 38 pp., https://arxiv.org/pdf/2009.09913.pdf.

    • Crossref
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2014: Stratospheric wave–mean flow feedbacks and sudden stratospheric warmings in a simple model forced by upward wave activity flux. J. Atmos. Sci., 71, 40554071, https://doi.org/10.1175/JAS-D-14-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahan, J., A. Antoszewski, C. Lorpaiboon, B. P. Vani, J. Weare, and A. R. Dinner, 2021: Long-time-scale predictions from short-trajectory data: A benchmark analysis of the trp-cage miniprotein. J. Chem. Theory Comput., 17, 2948–2963, https://doi.org/10.1021/acs.jctc.0c00933.

    • Crossref
    • Export Citation
  • Tantet, A., F. R. van der Burgt, and H. A. Dijkstra, 2015: An early warning indicator for atmospheric blocking events using transfer operators. Chaos, 25, 036406, https://doi.org/10.1063/1.4908174.

    • Crossref
    • Export Citation
  • Thiede, E., D. Giannakis, A. R. Dinner, and J. Weare, 2019: Galerkin approximation of dynamical quantities using trajectory data. arXiv:1810.01841, 24 pp., https://arxiv.org/pdf/1810.01841.pdf.

    • Crossref
    • Export Citation
  • Tibshirani, R., 1996: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc., B58, 267288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., F.-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152–165, https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2.

    • Crossref
    • Export Citation
  • Vanden-Eijnden, E., and J. Weare, 2013: Data assimilation in the low noise regime with application to the Kuroshio. Mon. Wea. Rev., 141, 18221841, https://doi.org/10.1175/MWR-D-12-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Crossref
    • Export Citation
  • Wan, Z. Y., P. Vlachas, P. Koumoutsakos, and T. Sapsis, 2018: Data-assisted reduced-order modeling of extreme events in complex dynamical systems. PLOS ONE, 13, e0197704, https://doi.org/10.1371/journal.pone.0197704.

    • Crossref
    • Export Citation
  • Weare, J., 2009: Particle filtering with path sampling and an application to a bimodal ocean current model. J. Comput. Phys., 228, 43124331, https://doi.org/10.1016/j.jcp.2009.02.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, R. J., D. A. Plotkin, M. E. O’Neill, D. S. Abbot, and J. Weare, 2019: Practical rare event sampling for extreme mesoscale weather. Chaos, 29, 053109, https://doi.org/10.1063/1.5081461.

    • Crossref
    • Export Citation
  • Yasuda, Y., F. Bouchet, and A. Venaille, 2017: A new interpretation of vortex-split sudden stratospheric warmings in terms of equilibrium statistical mechanics. J. Atmos. Sci., 74, 39153936, https://doi.org/10.1175/JAS-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1987a: Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 17231733, https://doi.org/10.1175/1520-0469(1987)044<1723:BPOASV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1987b: Dynamical aspects of stratospheric vacillations in a highly truncated model. J. Atmos. Sci., 44, 3683–3695, https://doi.org/10.1175/1520-0469(1987)044<3683:DAOSVI>2.0.CO;2.

    • Crossref
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, https://doi.org/10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwanzig, R., 2001: Nonequilibrium Statistical Mechanics. Oxford University Press, 240 pp.

All Time Past Year Past 30 Days
Abstract Views 652 7 0
Full Text Views 569 348 27
PDF Downloads 550 317 23