Sensitivity of Tropical Tropopause Layer Cirrus Prediction in GRAPES Global Forecast System

Jiong Chen aNational Meteorological Center, Beijing, China
bNumerical Weather Prediction Center, China Meteorological Administration, Beijing, China

Search for other papers by Jiong Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7010-7570
,
Zhe Li aNational Meteorological Center, Beijing, China
bNumerical Weather Prediction Center, China Meteorological Administration, Beijing, China

Search for other papers by Zhe Li in
Current site
Google Scholar
PubMed
Close
,
Zhanshan Ma aNational Meteorological Center, Beijing, China
bNumerical Weather Prediction Center, China Meteorological Administration, Beijing, China

Search for other papers by Zhanshan Ma in
Current site
Google Scholar
PubMed
Close
,
Yong Su aNational Meteorological Center, Beijing, China
bNumerical Weather Prediction Center, China Meteorological Administration, Beijing, China

Search for other papers by Yong Su in
Current site
Google Scholar
PubMed
Close
, and
Qijun Liu aNational Meteorological Center, Beijing, China
bNumerical Weather Prediction Center, China Meteorological Administration, Beijing, China

Search for other papers by Qijun Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A warm bias with a maximum value of over 4 K in the tropical tropopause layer (TTL) is detected in day-5 operational forecasts of the Global/Regional Assimilation and Prediction System (GRAPES) for global medium-range numerical weather prediction (GRAPES_GFS). In this study, the predicted temperature changes caused by different processes are examined, and the predicted cloud fractions are compared with the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis data. It is found that the overprediction of the TTL cirrus fraction contributes to the warm bias due to cloud-radiative heating. The interactions among the ice nucleation, deposition/sublimation, and the large-scale condensation together determine the results of the TTL ice crystal content prediction. Moreover, a range of sensitivity experiments show that the TTL ice crystal content prediction is sensitive to the threshold relative humidity over ice (RHi) in the ice nucleation process. Then the uncertainties of the formulas for saturation vapor pressure over ice at very low temperatures are discussed. The RHi calculated based on the Magnus–Tetens formula is up to 10% higher than that based on the Goff–Gratch formula. As the Goff–Gratch formula is applicable over a broader range of 184–273 K, it is more suitable for the cold TTL. When the Goff–Gratch formula rather than the Magnus–Tetens formula is used in the microphysics scheme, the TTL cirrus forecasts are improved greatly, and the warm bias disappears completely. After investigating the interplay of the dynamical, microphysical, and radiative processes, we find a positive feedback mechanism that exacerbates the TTL cirrus prediction error.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiong Chen, cjiong@cma.gov.cn

Abstract

A warm bias with a maximum value of over 4 K in the tropical tropopause layer (TTL) is detected in day-5 operational forecasts of the Global/Regional Assimilation and Prediction System (GRAPES) for global medium-range numerical weather prediction (GRAPES_GFS). In this study, the predicted temperature changes caused by different processes are examined, and the predicted cloud fractions are compared with the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis data. It is found that the overprediction of the TTL cirrus fraction contributes to the warm bias due to cloud-radiative heating. The interactions among the ice nucleation, deposition/sublimation, and the large-scale condensation together determine the results of the TTL ice crystal content prediction. Moreover, a range of sensitivity experiments show that the TTL ice crystal content prediction is sensitive to the threshold relative humidity over ice (RHi) in the ice nucleation process. Then the uncertainties of the formulas for saturation vapor pressure over ice at very low temperatures are discussed. The RHi calculated based on the Magnus–Tetens formula is up to 10% higher than that based on the Goff–Gratch formula. As the Goff–Gratch formula is applicable over a broader range of 184–273 K, it is more suitable for the cold TTL. When the Goff–Gratch formula rather than the Magnus–Tetens formula is used in the microphysics scheme, the TTL cirrus forecasts are improved greatly, and the warm bias disappears completely. After investigating the interplay of the dynamical, microphysical, and radiative processes, we find a positive feedback mechanism that exacerbates the TTL cirrus prediction error.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jiong Chen, cjiong@cma.gov.cn
Save
  • Balmes, K., and Q. Fu, 2018: An investigation of optically very thin ice clouds from ground-based ARM Raman lidars. Atmosphere, 9, 445, https://doi.org/10.3390/atmos9110445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chin. Sci. Bull., 53, 34333445, https://doi.org/10.1007/s11434-008-0494-z.

    • Search Google Scholar
    • Export Citation
  • Chen, Q. Y., X. S. Shen, J. Sun, and K. Liu, 2016: Momentum budget diagnosis and the parameterization of subgrid-scale orographic drag in global GRAPES. J. Meteor. Res., 30, 771788, https://doi.org/10.1007/s13351-016-6033-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. S. Ma, and Y. Su, 2017: Boundary layer coupling to Charney–Phillips vertical grid in GRAPES model (in Chinese). J. Appl. Meteor. Sci., 28, 5260, https://doi.org/10.11898/1001-7313.20170105.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. S. Ma, Z. Li, X. S. Shen, Y. Su, Q. Y. Chen, and Y. Z. Liu, 2020: Vertical diffusion and cloud scheme coupling to the Charney–Phillips vertical grid in GRAPES global forecast system. Quart. J. Roy. Meteor. Soc., 146, 21912204, https://doi.org/10.1002/qj.3787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and R.-F. Lin, 2008: Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds. J. Geophys. Res., 113, D23211, https://doi.org/10.1029/2008JD010332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, https://doi.org/10.5194/acp-12-2055-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corti, T., B. P. Luo, T. Peter, H. Vömel, and Q. Fu, 2005: Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere. Geophys. Res. Lett., 32, L06802, https://doi.org/10.1029/2004GL021889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 10131023, https://doi.org/10.1175/BAMS-84-8-1013.

  • Das, S. K., C.-W. Chiang, and J.-B. Nee, 2011: Influence of tropical easterly jet on upper tropical cirrus: An observational study from CALIPSO, Aura-MLS, and NCEP/NCAR data. J. Geophys. Res., 116, D12204, https://doi.org/10.1029/2011JD015923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinh, T., and S. Fueglistaler, 2014: Microphysical, radiative, and dynamical impacts of thin cirrus clouds on humidity in the tropical tropopause layer and lower stratosphere. Geophys. Res. Lett., 41, 69496955, https://doi.org/10.1002/2014GL061289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., Y. Hu, and Q. Yang, 2007: Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett., 34, L14813, https://doi.org/10.1029/2007GL030099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., M. Smith, and Q. Yang, 2018: The impact of cloud radiative effects on the tropical tropopause layer temperatures. Atmosphere, 9, 377, https://doi.org/10.3390/atmos9100377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and Q. Fu, 2006: Impact of clouds on radiative heating rates in the tropical lower stratosphere. J. Geophys. Res., 111, D23202, https://doi.org/10.1029/2006JD007273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2009: Cirrus observations in the tropical tropopause layer over the western Pacific. J. Geophys. Res., 114, D09304, https://doi.org/10.1029/2008JD011040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, K., P. R. Field, R. Cotton, and A. J. Baran, 2015: The sensitivity of simulated high clouds to ice crystal fall speed, shape and size distribution. Quart. J. Roy. Meteor. Soc., 141, 15461559, https://doi.org/10.1002/qj.2457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, https://doi.org/10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1946: Low-pressure properties of water from −160° to 212°F. Trans. Amer. Soc. Heat. Vent. Eng., 52, 95122.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2010: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, J. W., D. M. Schultz, and A. R. Irving, 2008: Cloud-top temperatures for precipitating winter clouds. J. Appl. Meteor. Climatol., 47, 351359, https://doi.org/10.1175/2007JAMC1549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and Coauthors, 2015: Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. J. Climate, 28, 65166535, https://doi.org/10.1175/JCLI-D-15-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Heymsfield, A. J., L. M. Miloshevich, C. Twohy, G. Sachse, and S. Oltmans, 1998: Upper-tropospheric relative humidity observations and implications for cirrus ice nucleation. Geophys. Res. Lett., 25, 13431346, https://doi.org/10.1029/98GL01089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, https://doi.org/10.1002/qj.49712454911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimension and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, https://doi.org/10.1029/JC079i015p02199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. J., and G. He, 1988: Numerical simulation of microphysical processes in cumulonimbus. Part I: Microphysical model. Acta Meteor. Sin., 2, 471489.

    • Search Google Scholar
    • Export Citation
  • Huang, J. H., 2018: A simple accurate formula for calculating saturation vapor pressure of water and ice. J. Appl. Meteor. Climatol., 57, 12651272, https://doi.org/10.1175/JAMC-D-17-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101, 21 36121 375, https://doi.org/10.1029/95JD03575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, A. S. Ackerman, A. Tabazadeh, and O. B. Toon, 2001: A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. J. Geophys. Res., 106, 17 23717 252, https://doi.org/10.1029/2000JD900649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2005: Ice supersaturations exceeding 100% at the cold tropical tropopause: Implications for cirrus formation and dehydration. Atmos. Chem. Phys., 5, 851862, https://doi.org/10.5194/acp-5-851-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2017: The NASA airborne tropical tropopause experiment: High-altitude aircraft measurements in the tropical western Pacific. Bull. Amer. Meteor. Soc., 98, 129143, https://doi.org/10.1175/BAMS-D-14-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., K. M. Grise, and S.-W. Son, 2013: Thermal characteristics of the cold-point tropopause region in CMIP5 models. J. Geophys. Res. Atmos., 118, 88278841, https://doi.org/10.1002/jgrd.50649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1972: Parameterization of ice growth for numerical calculation of cloud dynamics. Mon. Wea. Rev., 100, 417423, https://doi.org/10.1175/1520-0493(1972)100<0417:POIGFN>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K., Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806822, https://doi.org/10.1007/s13351-015-5043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud scheme of HLAFS and simulation of heavy rainfall and clouds, Part I: Explicit cloud scheme (in Chinese). Yingyong Qixiang Xuebao, 14, 6067.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, https://doi.org/10.1175/3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z. S., Q. J. Liu, C. F. Zhao, X. S. Shen, Y. Wang, J. H. Jiang, Z. Li, and Y. Yung, 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652667, https://doi.org/10.1002/2017MS001234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z. S., and Coauthors, 2021: Spin-up characteristics with three types of initial fields and the restart effects on the forecast accuracy in GRAPES Global Forecast System. Geosci. Model Dev., 14, 205221, https://doi.org/10.5194/gmd-14-205-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., 1953: On the growth of snow flake and graupel. Sci. Rep., Yokohama National University, Sec. I, 2, 18–40.

  • Maloney, C., and Coauthors, 2019: An evaluation of the representation of tropical tropopause cirrus in the CESM/CARMA model using satellite and aircraft observations. J. Geophys. Res. Atmos., 124, 86598687, https://doi.org/10.1029/2018JD029720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massie, S., A. Gettelman, W. Randel, and D. Baumgardner, 2002: Distribution of tropical cirrus in relation to convection. J. Geophys. Res., 107, 4591, https://doi.org/10.1029/2001JD001293.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primacy ice-nucleation parameterization in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecast System. Mon. Wea. Rev., 136 47734798, https://doi.org/10.1175/2008MWR2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, https://doi.org/10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, F. W., 1967: On the computation of saturation vapour pressure. J. Appl. Meteor., 6, 203204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J., and Coauthors, 2018: Ozone sensitivity of tropical upper-troposphere and stratosphere temperature in the MetOffice Unified Model. Quart. J. Roy. Meteor. Soc., 144, 20012009, https://doi.org/10.1002/qj.3346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res., 116, D12201, https://doi.org/10.1029/2010JD015462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and S. B. Honomichl, 2018: Lapse rate or cold point: The tropical tropopause identified by in situ trace gas measurements. Geophys. Res. Lett., 45, 10 75610 763, https://doi.org/10.1029/2018GL079573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors, 2001: Aircraft observations of thin cirrus clouds near the tropical tropopause. J. Geophys. Res., 106, 97659786, https://doi.org/10.1029/2000JD900648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., D. P. Kratz, J.-M. Yoo, G. Dalu, and A. Vernekax, 1993: Optically thin cirrus clouds: radiative impact on the warm pool. J. Quant. Spectrosc. Radiat. Transfer, 49, 467483, https://doi.org/10.1016/0022-4073(93)90061-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Springer, 976 pp.

  • Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61, 21332148, https://doi.org/10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roger, D. C., 1974: The aggregation of natural ice crystals. Res. Rep. AR110, Department of Atmospheric Resources Engineering, University of Wyoming, 91 pp.

  • Russotto, R. D., T. P. Ackerman, and D. R. Durran, 2016: Sensitivity of thin cirrus clouds in the tropical tropopause layer to ice crystal shape and radiative absorption. J. Geophys. Res. Atmos., 121, 29552972, https://doi.org/10.1002/2015JD024413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2019: Water vapor, clouds, and saturation in the tropical tropopause layer. J. Geophys. Res. Atmos., 124, 39844003, https://doi.org/10.1029/2018JD029849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X. S., and Coauthors, 2017: Development and operation transformation of GRAPES global middle-range forecast system (in Chinese). J. Appl. Meteor. Sci., 28, 1–10, https://doi.org/10.11898/1001-7313.20170101.

    • Crossref
    • Export Citation
  • Sherwood, S. C., 1999: On moistening of the tropical troposphere by cirrus clouds. J. Geophys. Res., 104, 11 949–11 960, https://doi.org/10.1029/1999JD900162.

    • Crossref
    • Export Citation
  • Spichtinger, P., K. Gierens, and W. Read, 2003: The global distribution of ice-supersaturated regions as seen by the microwave limb sounder. Quart. J. Roy. Meteor. Soc., 129, 33913410, https://doi.org/10.1256/qj.02.141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Y., X. S. Shen, X. Peng, X. Li, X. Wu, S. Zhang, and X. Chen, 2013: Application of PRM scalar advection scheme in GRAPES Global Forecast System (in Chinese). Chinese J. Atmos. Sci., 37, 1309–1325, https://doi.org/10.3878/j.issn.1006-9895.2013.12164.

    • Crossref
    • Export Citation
  • Su, Y., X. S. Shen, Q. Zhang, and J. Liu, 2014: Application of spline interpolation to physical process feedback accuracy improvement of GRAPES model (in Chinese). Yingyong Qixiang Xuebao, 25, 202211.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, https://doi.org/10.1002/qj.49710444110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657, https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., W. J. Randel, and E. J. Jensen, 2011: Cirrus cloud-temperature interactions in the tropical tropopause layer: A case study. Atmos. Chem. Phys., 11, 10 08510 095, https://doi.org/10.5194/acp-11-10085-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., and Coauthors, 2020: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer. Atmos. Chem. Phys., 20, 753770, https://doi.org/10.5194/acp-20-753-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornberry, T. D., A. W. Rollins, R. S. Gao, L. A. Watts, S. J. Ciciora, R. J. McLaughlin, and D. W. Fahey, 2015: A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere. Atmos. Meas. Tech., 8, 211224, https://doi.org/10.5194/amt-8-211-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., K. Gierens, and G. Radel, 2007: Ice supersaturation in the ECMWF integrated forecast system. Quart. J. Roy. Meteor. Soc., 13, 5363, https://doi.org/10.1002/qj.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, H.-H., and Q. Fu, 2016: Tropical tropopause layer cirrus and its relation to tropopause. J. Quant. Spectrosc. Radiat. Transfer, 188, 118131, https://doi.org/10.1016/j.jqsrt.2016.05.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. J. Jensen, and L. Pfister, 2018: Convective influence on the humidity and clouds in the tropical tropopause layer during boreal summer. J. Geophys. Res. Atmos., 123, 75767593, https://doi.org/10.1029/2018JD028674.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. J. Jensen, L. Pfister, M. Krämer, A. Afchine, and M. Schoeberl, 2020: Impact of convectively detrained ice crystals on the humidity of the tropical tropopause layer in boreal winter. J. Geophys. Res. Atmos., 125, e2020JD032894, https://doi.org/10.1029/2020JD032894.

    • Crossref
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, https://doi.org/10.1175/JAS-D-13-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, Q. Fu, and T. P. Ackerman, 2010: Tropical tropopause transition layer cirrus as represented by CALIPSO lidar observations. J. Atmos. Sci., 67, 31133129, https://doi.org/10.1175/2010JAS3412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, https://doi.org/10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., and Coauthors, 2020: Observational evidence that radiative heating modifies the life cycle of tropical anvil clouds. J. Climate, 33, 86218640, https://doi.org/10.1175/JCLI-D-20-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P.-H., M. P. McCormick, L. R. Poole, W. P. Chu, G. K. Yue, G. S. Kent, and K. M. Skeens, 1994: Tropical high cloud characteristics derived from SAGE II extinction measurements. Atmos. Res., 34, 5383, https://doi.org/10.1016/0169-8095(94)90081-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P.-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from stratospheric aerosol and gas experiment II observations (1985–1990). J. Geophys. Res., 101, 29 40729 430, https://doi.org/10.1029/96JD01780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1957: Definition of the tropopause. WMO Bull., 6, 136137.

  • Zhang, L., and Coauthors, 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 18821896, https://doi.org/10.1002/qj.3533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q. Y., T. L. Black, and M. E. Baldwin, 1997: Implementation of the cloud prediction scheme in the Eta Model at NCEP. Wea. Forecasting, 12, 697712, https://doi.org/10.1175/1520-0434(1997)012<0697:IOTCPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 179 0 0
Full Text Views 221 105 8
PDF Downloads 233 107 5