Convective Cloud Clusters and Squall Lines along the Coastal Amazon

A. C. Sousa aPG Program in Climate and Environment (CLIAMB), National Institute of Amazon Research (INPA), Manaus/Amazonas, Brazil

Search for other papers by A. C. Sousa in
Current site
Google Scholar
PubMed
Close
,
L. A. Candido bNational Institute of Amazon Research (INPA), Manaus/Amazonas, Brazil

Search for other papers by L. A. Candido in
Current site
Google Scholar
PubMed
Close
, and
P. Satyamurty bNational Institute of Amazon Research (INPA), Manaus/Amazonas, Brazil

Search for other papers by P. Satyamurty in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale convective cloud clusters develop and organize in the form of squall lines along the coastal Amazon in the afternoon hours and propagate inland during the evening hours. The frequency, location, organization into lines, and movement of the convective systems are determined by analyzing the “precipitation features” obtained from the TRMM satellite for the period 1998–2014. The convective clusters and their alignments into Amazon coastal squall lines are more frequent from December to July, and they mostly stay within 170 km of the coastline. Their development and movement in the afternoon and evening hours of about 14 m s−1 are helped by the sea breeze. Negative phase of Atlantic dipole and La Niña combined increase the frequency of convective clusters over the coastal Amazon. Composite environmental conditions of 13 large Amazon coastal squall-line cases in April show that conditional instability increases from 0900 to 1200 LT and the wind profiles show a jet-like structure at low levels of the atmosphere. The differences in the vertical profiles of temperature and humidity between the large-squall-line composites and no-squall-line composites are weak. However, appreciable increase in the mean value of CAPE from 0900 to 1500 LT is found in the large-squall-line composite. The mean mixing ratio of the mixed layer at 0900 LT in La Niña situations is significantly larger in the large-squall-line composite. Thus, CAPE and mixed-layer mixing ratio are considered to be promising indicators of the convective activity over the coastal belt of the Amazon basin.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aline Corrêa de Sousa, alinecorrea.acs@gmail.com

Abstract

Mesoscale convective cloud clusters develop and organize in the form of squall lines along the coastal Amazon in the afternoon hours and propagate inland during the evening hours. The frequency, location, organization into lines, and movement of the convective systems are determined by analyzing the “precipitation features” obtained from the TRMM satellite for the period 1998–2014. The convective clusters and their alignments into Amazon coastal squall lines are more frequent from December to July, and they mostly stay within 170 km of the coastline. Their development and movement in the afternoon and evening hours of about 14 m s−1 are helped by the sea breeze. Negative phase of Atlantic dipole and La Niña combined increase the frequency of convective clusters over the coastal Amazon. Composite environmental conditions of 13 large Amazon coastal squall-line cases in April show that conditional instability increases from 0900 to 1200 LT and the wind profiles show a jet-like structure at low levels of the atmosphere. The differences in the vertical profiles of temperature and humidity between the large-squall-line composites and no-squall-line composites are weak. However, appreciable increase in the mean value of CAPE from 0900 to 1500 LT is found in the large-squall-line composite. The mean mixing ratio of the mixed layer at 0900 LT in La Niña situations is significantly larger in the large-squall-line composite. Thus, CAPE and mixed-layer mixing ratio are considered to be promising indicators of the convective activity over the coastal belt of the Amazon basin.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aline Corrêa de Sousa, alinecorrea.acs@gmail.com
Save
  • Alcântara, C. R., M. A. F. Silva Dias, E. P. Souza, and J. C. P. Cohen, 2011: Verification of the role of the low level jets in Amazon squall lines. Atmos. Res., 100, 3644, https://doi.org/10.1016/j.atmosres.2010.12.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreoli, R. V., S. S. de Oliveira, M. T. Kayano, J. Viegas, R. A. F. de Souza, and L. A. Candido, 2016: The influence of different El Niño types on the South American rainfall. Int. J. Climatol., 37, 13741390, https://doi.org/10.1002/joc.4783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, T., and C. Hohenegger, 2021: Entrainment and its dependency on environmental conditions and convective organization in convection-permitting simulations. Mon. Wea. Rev., 149, 537–550, https://doi.org/10.1175/MWR-D-20-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. W. Grover, and M. W. Moncrieff, 1976: Structure and motion of tropical squall-lines over Venezuela. Quart. J. Roy. Meteor. Soc., 102, 395404, https://doi.org/10.1002/qj.49710243209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalcanti, I. F. A., 1982: Um estudo sobre interações entre sistemas de circulação de escala sinótica e circulações locais (A study of interactions between synoptic-scale circulation systems and local circulations). Dissertation, Department of Meteorology, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brazil, 140 pp.

  • Chakraborty, S., J. H. Jiang, H. Su, and R. Fu, 2020: Deep convective evolution from shallow clouds over the Amazon and Congo rainforests. J. Geophys. Res. Atmos., 125, e2019JD030962, https://doi.org/10.1029/2019JD030962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic intertropical convergence zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, https://doi.org/10.1029/2000JD000307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P., M. A. F. Silva Dias, and C. A. Nobre, 1995: Environmental conditions associated with Amazonian squall line: A case study. Mon. Wea. Rev., 123, 31633174, https://doi.org/10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P., I. F. A. Cavalcanti, R. H. M. Braga, and L. Santos Neto, 2009: Linhas de Instabilidade na costa N-NE da América do Sul (Lines of instability on the N-NE coast of South America). Tempo e Clima no Brasil, I. F. A. Cavalcanti et al., Eds., Oficina de Textos, 75–93.

  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 11 June 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Galway, J. G., 1956: The lifted index as a predictor of latent instability. Bull. Amer. Meteor. Soc., 37, 528529, https://doi.org/10.1175/1520-0477-37.10.528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., H. L. Massie, J. Halverson, S. Greco, and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608622, https://doi.org/10.1175/1520-0493(1994)122<0608:ACSLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J. J., 1960: Weather Forecasting for Aeronautics. Academic Press, 673 pp.

  • Germano, M. F., M. I. Vitorino, J. C. P. Cohen, G. B. Costa, J. I. de Oliveira Souto, M. T. C. Rebelo, and A. M. L. de Sousa, 2017: Analysis of the breeze circulations in Eastern Amazon: An observational study. Atmos. Sci. Lett., 18, 6775, https://doi.org/10.1002/asl.726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greco, S., and Coauthors, 1990: Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B. J. Geophys. Res., 95, 17 00117 014, https://doi.org/10.1029/JD095iD10p17001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influences. J. Climate, 16, 263280, https://doi.org/10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2011: Exploring the climate problems of Brazil’s Nordeste: A review. Climatic Change, 112, 243251, https://doi.org/10.1007/s10584-011-0227-1.

    • Search Google Scholar
    • Export Citation
  • Holton, J., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Houze, R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1980: Diurnal rainfall variation in the northeast Brazil. Mon. Wea. Rev., 108, 488498, https://doi.org/10.1175/1520-0493(1980)108<0488:DRVINB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., 2007: Description of products in University of Utah Database. University of Utah, accessed 24 January 2018, http://www.atmos.illinois.edu/~snesbitt/webdocs/pf6.1.pdf.

  • Liu, C., E. Zipser, D. Cecil, S. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature data base from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loureiro, R., J. M. Saraiva, I. Saraiva, R. C. Senna, and A. S. Fredó, 2014: Estudo dos eventos extremos de precipitação ocorridos em 2009 no Estado do Pará (Study of extreme precipitation events that occurred in 2009 in the State of Pará). Rev. Bras. Meteor., 29, 8394, https://doi.org/10.1590/0102-778620130054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and Coauthors, 2014: The CHUVA project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, https://doi.org/10.1175/BAMS-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matos, A. P., and J. P. Cohen, 2016: Circulação de brisa e a banda de precipitação na margem leste da baía do Marajó (Breeze circulation and precipitation band on the east bank of Marajó Bay). Ciênc. Nat., 38, 2127, https://doi.org/10.5902/2179460X19814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGaughey, G., E. J. Zipser, R. W. Spencer, and R. E. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947, https://doi.org/10.1175/1520-0450(1996)035<1921:HRPMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. C., 1967: Notes on analysis and severe storm forecasting procedures of the military weather warning center. USAF AWS Headquarters Tech. Rep. 200, 184 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/744042.pdf.

  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negrón-Juárez, R. I., and Coauthors, 2010: Widespread Amazon forest tree mortality from a single cross-basin squall line event. Geophys. Res. Lett., 37, L16701, https://doi.org/10.1029/2010GL043733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunes, A. M. P., M. A. F. Silva Dias, E. M. Anselmo, and C. A. Morales, 2016: Severe convection features in the Amazon Basin: A TRMM-based 15-year evaluation. Front. Earth Sci., 4, 37, https://doi.org/10.3389/feart.2016.00037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, F. P., and M. D. Oyama, 2015: Antecedent atmospheric conditions related to squall-line initiation over the northern coast of Brazil in July. Wea. Forecasting, 30, 12541264, https://doi.org/10.1175/WAF-D-14-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, F. P., and M. D. Oyama, 2020: Squall-line initiation over the northern coast of Brazil in March: Observational features. Meteor. Appl., 27, e1799, https://doi.org/10.1002/met.1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 2003: Mesoscale meteorology: Overview. Encyclopedia of Atmospheric Sciences, J. R. Holton, Ed., Academic Press, 1237–1243, https://doi.org/10.1016/B0-12-227090-8/00478-4.

    • Crossref
    • Export Citation
  • Prosser, N. E., and D. S. Foster, 1966: Upper air sounding analysis by use of an electronic computer. J. Appl. Meteor., 5, 296300, https://doi.org/10.1175/1520-0450(1966)005<0296:UASABU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., and K. Hada, 1990: Characteristics of rainfall over Brazil: Annual variations and connections with the Southern Oscillation. Theor. Appl. Climatol., 42, 8191, https://doi.org/10.1007/BF00868215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., S. H. Franchito, C. M. E. Santo, and M. A. Gan, 2015: An update on the rainfall characteristics of Brazil: Seasonal variations and trends in 1979–2011. Int. J. Climatol., 36, 291302, https://doi.org/10.1002/joc.4345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rehbein, A., T. Ambrizzi, and C. R. Mechoso, 2017: Mesoscale convective systems over the Amazon basin. Part I: Climatological aspects. Int. J. Climatol., 38, 215229, https://doi.org/10.1002/joc.5171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadowski, A. F., and R. E. Rieck, 1977: Stability indices. NOAA NWS Program Requirements & Planning Division Tech. Procedures Bulletin TPB-207, 8 pp.

  • Satyamurty, P., and M. B. Rosa, 2020: Synoptic climatology of tropical and subtropical South America and adjoining seas as inferred from Geostationary Operational Environmental Satellite imagery. Int. J. Climatol., 40, 378399, https://doi.org/10.1002/joc.6217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripole, and X. Xiang, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506531, https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodré, G. R., M. I. Votorino, J. C. P. Cohen, and B. C. Moraes, 2015: Estudo observacional da convecção de mesoescala em diferentes superfícies no estado do Pará. (Study of mesoscale convection in different areas in Pára state). Rev. Bras. Geogr. Fís., 8, 12811293, https://doi.org/10.5935/1984-2295.20150068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, E. B., M. T. Kayano, J. Tota, L. Pezzi, G. Fisch, and C. Nobre, 2000: On the influences of the El Niño, La Niña and Atlantic Dipole pattern on the Amazonian rainfall during 1960-1998. Acta Amazon., 30, 305318, https://doi.org/10.1590/1809-43922000302318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R., H. Goodman, and R. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, L. M. S., P. Satyamurty, and L. A. T. Machado, 2014: Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol., 34, 35743584, https://doi.org/10.1002/joc.3929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viegas, J., and Coauthors, 2019: Caracterização dos diferentes tipos de El Niño e seus impactos na América do Sul a Partir de dados observados e modelados. Rev. Bras. Meteor., 34, 4367, https://doi.org/10.1590/0102-7786334015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, G. L. Stephens, and V. N. Bringi, 1990: Microwave radiative transfer studies using combined multiparameter radar and radiometer measurements during COHMEX. J. Appl. Meteor., 29, 561585, https://doi.org/10.1175/1520-0450(1990)029<0561:MRTSUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanzeler da Costa, C. P. W., and P. Satyamurty, 2016: Inter-hemispheric and inter-zonal moisture transports and monsoon regimes. Int. J. Climatol., 36, 47054722, https://doi.org/10.1002/joc.4662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, J. R. Worden, S. Chakraborty, N. E. Clinton, C. Risi, Y. Sun, and L. Yin, 2017: Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA, 114, 84818486, https://doi.org/10.1073/pnas.1621516114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, Y., R. Fu, J. A. Marengo, and H. Wang, 2017: Seasonal variation of shallow-to-deep convection transition and its link to the environmental conditions over the Central Amazon. J. Geophys. Res. Atmos., 122, 26492666, https://doi.org/10.1002/2016JD025993.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 488 0 0
Full Text Views 301 177 18
PDF Downloads 328 182 26