Skill, Predictability, and Cluster Analysis of Atlantic Tropical Storms and Hurricanes in the ECMWF Monthly Forecasts

Suzana J. Camargo aLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0802-5160
,
Frédéric Vitart bEuropean Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Frédéric Vitart in
Current site
Google Scholar
PubMed
Close
,
Chia-Ying Lee aLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Chia-Ying Lee in
Current site
Google Scholar
PubMed
Close
, and
Michael K. Tippett cDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper we analyze Atlantic Ocean hurricane activity in the European Centre for Medium-Range Weather Forecasts (ECMWF) monthly hindcasts for the period 1998–2017. The main climatological characteristics of Atlantic tropical cyclone (TC) activity are considered at different lead times and across the entire ECMWF ensemble using three diagnostic variables: the number of tropical cyclones, the number of hurricanes, and the accumulated cyclone energy. The impacts of changing horizontal resolution and stochastic parameterization are clear in these diagnostic variables. The model skill scores for the number of tropical cyclones and accumulated cyclone energy by lead time are also computed. Using cluster analysis, we compare the characteristics of the forecast TC tracks with observations. Although four of the ECMWF clusters have similar characteristics to observed ones, one of the ECMWF clusters does not have a corresponding one in observations. We consider the predictability of each of these clusters, as well the modulation of their frequency by climate modes, such as the El Niño–Southern Oscillation and the Madden–Julian oscillation, taking advantage of the very large sample size of TC datasets in these hindcasts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suzana J. Camargo, suzana@ldeo.columbia.edu

Abstract

In this paper we analyze Atlantic Ocean hurricane activity in the European Centre for Medium-Range Weather Forecasts (ECMWF) monthly hindcasts for the period 1998–2017. The main climatological characteristics of Atlantic tropical cyclone (TC) activity are considered at different lead times and across the entire ECMWF ensemble using three diagnostic variables: the number of tropical cyclones, the number of hurricanes, and the accumulated cyclone energy. The impacts of changing horizontal resolution and stochastic parameterization are clear in these diagnostic variables. The model skill scores for the number of tropical cyclones and accumulated cyclone energy by lead time are also computed. Using cluster analysis, we compare the characteristics of the forecast TC tracks with observations. Although four of the ECMWF clusters have similar characteristics to observed ones, one of the ECMWF clusters does not have a corresponding one in observations. We consider the predictability of each of these clusters, as well the modulation of their frequency by climate modes, such as the El Niño–Southern Oscillation and the Madden–Julian oscillation, taking advantage of the very large sample size of TC datasets in these hindcasts.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suzana J. Camargo, suzana@ldeo.columbia.edu
Save
  • Angus, M., and G. C. Leckerbusch, 2020: On the dependency of Atlantic hurricane and European windstorm hazards. Geophys. Res. Lett., 47, e2020GL090446, https://doi.org/10.1029/2020GL090446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35, 367383, https://doi.org/10.1080/07055900.1997.9649597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., J. A. Curry, and C. D. Hoyos, 2009: Variability in tornado frequency associated with U.S. landfalling tropical cyclones. Geophys. Res. Lett., 36, L17805, https://doi.org/10.1029/2009GL040013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., J. A. Curry, and P. J. Webster, 2010: Predictability of North Atlantic tropical cyclone activity on intraseasonal time scales. Mon. Wea. Rev., 138, 43624374, https://doi.org/10.1175/2010MWR3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., P. J. Webster, J. A. Curry, and M. T. Jelinek, 2012: Extended prediction of north Indian Ocean tropical cyclones. Wea. Forecasting, 27, 757769, https://doi.org/10.1175/WAF-D-11-00083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, S. S., S. S. Chand, S. J. Camargo, K. J. Tory, C. Turville, and H. Ye, 2019: Western North Pacific tropical cyclone tracks in CMIP5 models: Statistical assessment using a model-independent detection and tracking scheme. J. Climate, 32, 71917208, https://doi.org/10.1175/JCLI-D-18-0785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudreault, M., L.-P. Caron, and S. J. Camargo, 2017: Reanalysis of climate influences on Atlantic tropical cyclone activity using cluster analysis. J. Geophys. Res. Atmos., 122, 42584280, https://doi.org/10.1002/2016JD026103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., J.-R. Bidlot, N. Wedi, M. Fuentes, M. Hamrud, G. Holt, and F. Vitart, 2007: The new ECMWF VAREPS (Variable Resolution Ensemble Prediction System). Quart. J. Roy. Meteor. Soc., 133, 681695, https://doi.org/10.1002/qj.75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. G. Barnston, 2009: Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI. Wea. Forecasting, 24, 472491, https://doi.org/10.1175/2008WAF2007099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, https://doi.org/10.1029/2007GC001861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, https://doi.org/10.1175/2009JAS3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and Coauthors, 2019: Tropical cyclone prediction on subseasonal time-scales. Trop. Cyclone Res. Rev., 8, 150165, https://doi.org/10.1016/j.tcrr.2019.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and Coauthors, 2020: Characteristics of model tropical cyclone climatology and the large-scale environment. J. Climate, 33, 44634487, https://doi.org/10.1175/JCLI-D-19-0500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, J., and Coauthors, 2019: The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145, 105116, https://doi.org/10.1002/qj.3407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., F. Massonnet, P. J. Klotzbach, T. J. Philp, and J. Stroeve, 2020: Making seasonal outlooks of Arctic sea ice and Atlantic hurricanes valuable—not just skillful. Bull. Amer. Meteor. Soc., 101, E36E42, https://doi.org/10.1175/BAMS-D-18-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, https://doi.org/10.1175/JCLI-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., and Coauthors, 2015: Cluster analysis of downscaled and explicitly simulated North Atlantic tropical cyclone tracks. J. Climate, 28, 13331361, https://doi.org/10.1175/JCLI-D-13-00646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 20822087, https://doi.org/10.1002/2017GL076966.

  • Elsberry, R. L., M. S. Jordan, and F. Vitart, 2010: Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia-Pac. J. Atmos. Sci., 46, 135153, https://doi.org/10.1007/s13143-010-0013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., M. S. Jordan, and F. Vitart, 2011: Evaluation of the ECMWF 32-day ensemble predictions during the 2009 season of the western North Pacific tropical cyclone events on intraseasonal timescales. Asia-Pac. J. Atmos. Sci., 47, 305318, https://doi.org/10.1007/s13143-011-0017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., H.-C. Tsai, and M. S. Jordan, 2014: Extended-range forecasts of Atlantic tropical cyclone events during 2012 using the ECMWF 32-day ensemble predictions. Wea. Forecasting, 29, 271288, https://doi.org/10.1175/WAF-D-13-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353356, https://doi.org/10.1175/BAMS-84-3-353.

  • Elsner, J. B., and A. B. Kara, Eds., 1999: Hurricane cycles and trends. Hurricanes of the North Atlantic: Climate and Society, Oxford University Press, 240–278.

  • Elsner, J. B., and B. Kocher, 2000: Global tropical cyclone activity: A link to the North Atlantic Oscillation. Geophys. Res. Lett., 27, 129132, https://doi.org/10.1029/1999GL010893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., and P.-C. Hsu, 2011: Extended-range ensemble forecasting of tropical cyclogenesis in the northern Indian Ocean: Modulation of Madden–Julian Oscillation. Geophys. Res. Lett., 38, L15803, https://doi.org/10.1029/2011GL048249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., 2004: Probabilistic curve-aligned clustering and prediction with regression mixture models. Ph.D. thesis, Dept. of Information and Computer Science, University of California, 281 pp.

  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, https://doi.org/10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, K., J.-H. Chen, L. M. Harris, S.-J. Lin, B. Xiang, and M. Zhao, 2017: Impact of intraseasonal oscillations on the tropical cyclone activity over the Gulf of Mexico and Western Caribbean Sea in GFDL HiRAM. J. Geophys. Res. Atmos., 122, 13 12513 137, https://doi.org/10.1002/2017JD027756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, K., J.-H. Chen, L. Harris, Y. Sun, and S.-J. Lin, 2019: Skillful prediction of monthly major hurricane activity in the North Atlantic with two-way nesting. Geophys. Res. Lett., 46, 92229230, https://doi.org/10.1029/2019GL083526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and M. Dilley, 2005: El Niño: Catastrophe or opportunity? J. Climate, 18, 651665, https://doi.org/10.1175/JCLI-3277.1.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, P. A., J. Camp, K. Bigelow, and A. Brown, 2019: Sub-seasonal predictability of the 2017–2018 Southern Hemisphere tropical cyclone season. Atmos. Sci. Lett., 20, e886, https://doi.org/10.1002/asl.886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hirons, L. C., P. Inness, F. Vitart, and P. Bechtold, 2013a: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part I: The representation of the MJO. Quart. J. Roy. Meteor. Soc., 139, 14171426, https://doi.org/10.1002/qj.2060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirons, L. C., P. Inness, F. Vitart, and P. Bechtold, 2013b: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quart. J. Roy. Meteor. Soc., 139, 14271444, https://doi.org/10.1002/qj.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, J.-K. E. Schemm, and W. K. M. Lau, 2000: Prediction skill of the Madden–Julian Oscillation in dynamical extended range forecasts. Climate Dyn., 16, 273289, https://doi.org/10.1007/s003820050327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2014: The Madden–Julian oscillation impacts on worldwide tropical cyclone activity. J. Climate, 27, 23172330, https://doi.org/10.1175/JCLI-D-13-00483.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and Coauthors, 2019: Seasonal tropical cyclone forecasting. Trop. Cyclone Res. Rev., 8, 134149, https://doi.org/10.1016/j.tcrr.2019.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., L.-P. Caron, and M. M. Bell, 2020: A statistical/dynamical model for the North Atlantic seasonal hurricane prediction. Geophys. Res. Lett., 47, e2020GL089357, https://doi.org/10.1029/e2020GL089357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671782, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozar, M. E., M. E. Mann, S. J. Camargo, J. P. Kossin, and J. L. Evans, 2012: Statistical modeling of Atlantic tropical cyclone counts. J. Geophys. Res., 117, D18103, https://doi.org/10.1029/2011JD017170.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, A. L., K. Pegion, and E. A. Barnes, 2020: Introduction to special collection: Bridging weather and climate: Subseasonal-to-Seasonal (S2S) prediction. J. Geophys. Res. Atmos., 125, e2019JD031833, https://doi.org/10.1029/2019JD031833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF ensemble prediction system on tropical cyclone forecasts. Quart. J. Roy. Meteor. Soc., 138, 20302046, https://doi.org/10.1002/qj.1942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967988, https://doi.org/10.1175/WAF-D-17-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, J. Camp, S. Wang, M. K. Tippett, and Q. Yang, 2020: Subseasonal predictions of tropical cyclone occurrence and ACE in the S2S dataset. Wea. Forecasting, 35, 921938, https://doi.org/10.1175/WAF-D-19-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 23152339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., L. Wang, M. Peng, B. Wang, C. Zhang, W. Lau, and H. Kuo, 2018: A paper on the tropical intraseasonal oscillation published in 1963 in a Chinese journal. Bull. Amer. Meteor. Soc., 99, 17651779, https://doi.org/10.1175/BAMS-D-17-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J. Meteor. Soc. Japan, 72, 401412, https://doi.org/10.2151/jmsj1965.72.3_401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, S.-J., S. T. K. Lang, M. Leutbecher, R. J. Hogan, and F. Vitart, 2019: Treatment of model uncertainty from radiation by the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme and associated revisions in the ECMWF ensembles. Quart. J. Roy. Meteor. Soc., 145, 7589, https://doi.org/10.1002/qj.3570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., and Coauthors, 2019: ECMWF activities for improved hurricane forecasts. Bull. Amer. Meteor. Soc., 100, 445458, https://doi.org/10.1175/BAMS-D-18-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian Oscillation. Science, 287, 20022004, https://doi.org/10.1126/science.287.5460.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., B. A. Cash, K. I. Hodges, and J. L. Kinter, 2019a: Seasonal forecasts of North Atlantic tropical cyclone activity in the North American Multi-Model Ensemble. Climate Dyn., 53, 71697184, https://doi.org/10.1007/s00382-017-3670-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., B. A. Cash, E. T. Swenson, and J. L. Kinter, 2019b: Assessment of climatology and predictability of Mid-Atlantic tropical cyclone landfalls in a high-atmospheric-resolution seasonal prediction system. Mon. Wea. Rev., 147, 29012917, https://doi.org/10.1175/MWR-D-19-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2020: Current and emerging developments in subseasonal to decadal prediction. Bull. Amer. Meteor. Soc., 101, E869E896, https://doi.org/10.1175/BAMS-D-19-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., D. Kim, S. J. Camargo, A. A. Wing, K. A. Reed, M. F. Wehner, and M. Zhao, 2020a: A horizontal resolution-dependent wind speed adjustment factor for tropical cyclones in climate model resolutions. Geophys. Res. Lett., 46, e2020GL087528, https://doi.org/10.1029/2020GL087528.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., and Coauthors, 2020b: Wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Climate, 33, 15751595, https://doi.org/10.1175/JCLI-D-19-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376, https://doi.org/10.2151/sola.2010-019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, J., and Coauthors, 2017: Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos., 122, 97219744, https://doi.org/10.1002/2017JD027007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Intraseasonal variations of OLR in the tropics during the FGGE year. J. Meteor. Soc. Japan, 64, 1734, https://doi.org/10.2151/jmsj1965.64.1_17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrizations in the ECMWF ensemble. Quart. J. Roy. Meteor. Soc., 143, 408422, https://doi.org/10.1002/qj.2931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., P. Chang, and R. Saravanan, 2016: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat. Geosci., 9, 155160, https://doi.org/10.1038/ngeo2624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 53955416, https://doi.org/10.1175/JCLI-D-17-0678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dyn., 39, 897917, https://doi.org/10.1007/s00382-011-1225-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., S. S. Chand, and S. J. Camargo, 2018: A statistical assessment of Southern Hemisphere tropical cyclone tracks in climate models. J. Climate, 31, 10 08110 104, https://doi.org/10.1175/JCLI-D-18-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., F. Vitart, and S. J. Camargo, 2020: Sub-seasonal to seasonal prediction of weather to climate with application to tropical cyclones. J. Geophys. Res. Atmos., 125, e2018JD029375, https://doi.org/10.1029/2018JD029375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2012: The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dyn., 39, 21852206, https://doi.org/10.1007/s00382-011-1235-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788, https://doi.org/10.1175/MWR-D-11-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models of the present climate. J. Adv. Model. Earth Syst., 6, 11541172, https://doi.org/10.1002/2014MS000372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, H.-C., R. L. Elsberry, M. S. Jordan, and F. Vitart, 2013: Objective verifications and false alarm analyses of western North Pacific tropical cyclone event forecasts by the ECMWF 32-day ensemble. Asia-Pac. J. Atmos. Sci., 49, 409420, https://doi.org/10.1007/s13143-013-0038-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., K. Hodges, B. Vannière, P. Davini, M. J. Roberts, K. Strommen, and A. Weisheimer, 2021: Impact of stochastic physics and model resolution of tropical cyclones in climate GCMs. J. Climate, 34, 43154341, https://doi.org/10.1175/JCLI-D-20-0507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, J. P., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2003: Monthly forecasting system. ECMWF Tech. Memo. 424, https://doi.org/10.21957/idipp7l0x.

    • Crossref
    • Export Citation
  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 27612779, https://doi.org/10.1175/MWR2826.1.

  • Vitart, F., 2009: Impact of the Madden–Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett., 36, L15802, https://doi.org/10.1029/2009GL039089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Vitart, F., and J. L. Anderson, 2001: Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations. J. Climate, 14, 533545, https://doi.org/10.1175/1520-0442(2001)014<0533:SOATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, https://doi.org/10.1002/qj.623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745760, https://doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., J. L. Anderson, J. Sirutis, and R. E. Tuleya, 2001: Sensitivity of tropical storms simulated by a general circulation model to changes in cumulus parameterization. Quart. J. Roy. Meteor. Soc., 127, 2551, https://doi.org/10.1002/qj.49712757103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, https://doi.org/10.1029/2007GL030740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2008: The new VarEPS-monthly forecasting system: A first step towards seamless prediction. Quart. J. Roy. Meteor. Soc., 134, 17891799, https://doi.org/10.1002/qj.322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. Leroy, and M. C. Wheeler, 2010: A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 138, 36713682, https://doi.org/10.1175/2010MWR3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2017: Potential applications of Subseasonal-to-Seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., and Coauthors, 2015: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, https://doi.org/10.1175/MWR-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 541 1 0
Full Text Views 677 486 28
PDF Downloads 410 195 26